Innate Immunotherapeutics' core technology is a unique therapeutic microparticle which induces the human immune system to fight certain cancers and infections, or turns off certain immune mechanisms which lead to autoimmune diseases such as Multiple Sclerosis (MS). This same technology can also be used in the design of better vaccines to potentially prevent or treat diseases such as influenza, cancer, malaria, or tuberculosis.
Background - The Immune System
Unlike most pharmaceutical agents (drugs or monoclonal antibodies), immunomodulators like MIS416 do not act directly on the target (cancer tumor, infectious agent, damaged nerve), but instead switch on powerful disease fighting mechanisms that form part of the human immune system. The immune system is a collection of biological barriers and processes that protects against disease by identifying and killing external threats such as infectious agents (bacteria, viruses, parasites, other pathogens) and internal threats such as cancer tumor cells. To function properly, the immune system needs to distinguish between threats and the body's own healthy cells. When this ability to distinguish between non-self and self breaks down, the immune system can attack healthy cells resulting in one of several autoimmune diseases.The immune system comprises several layers of defense. The first line of defense consists of physical barriers such as the skin and mucous membranes that line the digestive, respiratory, and reproductive tracts. For infection to occur, pathogens must first breach this physical barrier. When such a breach does occur, the innate immune system is the next line of defense - 'innate' because all animals naturally possess it from birth. The surveillance cells of the innate immune system firstly recognize the signature (or pattern) of an invading pathogen and then activate appropriate attack cells or mechanisms to clean out the invader. This same surveillance and response process also works for cells that go bad, e.g. early stage cancer cells. If the innate system is overwhelmed, the adaptive immune system is triggered, providing the last, but often the most potent layer of immune defense. The cells that form part of the adaptive response (antibodies and killer T-cells) must be custom-made to match the pathogen and so the process is relatively slow, but once designed, these cells can be made in huge quantities to overwhelm the threat. Once the system is adapted to recognize and destroy a particular invader, it remembers that invader, and can then react more quickly next time the invader is encountered.
No comments:
Post a Comment