Tuesday, 3 March 2015

Four thiings you need to know about cancer

(NaturalNews) Cancer and candida are apparently closely related. Some even claim Candida causes cancer, while others say they both originate and thrive in the same low pH, high acidic environment, possibly with a symbiotic relationship.

Candida yeast fungi are present to some extent in most or perhaps all of us. When the fungus overwhelms the gut's probiotic presence is when Candida begins to be an overall health threat.

When it comes to the relationship of candida to cancer, very few oncologists will consider that possibility. This; despite the fact that there are increasing reports of cancer tumors residing amongst Candida colonies from many orthodox medical sources.

The prerequisite conditions that precipitate Candida are: Using pharmaceuticals, especially antibiotics; diets high in sugary foods and beverages, excess alcohol, cigarette smoking, and caffeine, SAD (standard American diet) with lots of processed flour and other processed foods, a long period of anxiety or worry.

The ideal probiotic bacteria to pathogenic bacteria is 85/15, maybe 80/20. When this goes out of balance, the yeast can overwhelm probiotic bacteria and infect other areas. The usual lifestyle suspects contribute to low pH, high acid inner terrain or organ environments which invite both cancer cells and yeast spores to flourish.

Here are four major areas to keep in mind about candida and cancer

(1) The overlapping and crossover symptoms of Candida overgrowth, IBS (irritable bowel syndrome), Celiac disease, and other conditions connected to chronic fatigue are mind boggling. This simple test that may determine if you have Candida overgrowth.

Have a glass of water by your bedside. Upon awakening, spit into the water. Every 15 minutes for an hour, look for the following indicators: Stringy trails from the surface saliva dangling like jelly fish tentacles, tiny cloudy spots suspended in the water, the saliva blob drops intact onto the bottom of the glass.

The later any visual indicators show, the less infected you are. Indicators showing within the first few minutes may point to a worse condition. No indicators may mean you're free from Candida overgrowth.

(2) There are several natural remedies suggested for resolving Candida issues: Wild oregano oil, Pao D' Arco, garlic, whole clove teas, unpasteurized apple cider vinegar, and even cold pressed virgin coconut oil is highly recommended. (http://www.naturalnews.com/033459_candida_natural_remedies.html)

Be prepared to slow down if you become overwhelmed by yeast parasites dying off. Drinking a lot of pure water and applying detox principles can help avoid this.

(3) Killing the live yeast colonies is not enough because the spores released will re-establish colonies as long as the probiotic level is low. Most probiotics will not kill yeast parasites.

But TotalFlora and ThreeLac probiotics are considered both potent enough to kill yeast fungus cells and provide friendly flora gut linings.

(4) Bicarbonate of soda (baking soda) has emerged as the cheapest and perhaps best remedy for yeast infections and related cancers. Rome oncologist and author of Cancer is a Fungus Dr. Tulio Simoncini has a high cure rate on cancer. He believes cancer is caused by Candida overgrowth, which he treats by injecting or dripping bicarbonate of soda solutions into tumor areas.

Dr. Mark Sircus, author of Sodium Bicarbonate - Rich Man's Poor Man's Cancer Treatment thinks the origin of cancer tumors is more complex. But he does see the connection to Candida overgrowth with cancer. He also treats cancers with IV baking soda drips or injections.

By simply drinking a teaspoonful of baking soda in a solution of pure water daily or a half-hour before meals, you can kill off yeast infections. For cancer anywhere along the digestive tract, drinking baking soda with molasses or maple syrup has worked wonders. (http://www.naturalnews.com/027481_prostate_cancer_baking_soda.html)

The molasses or maple syrup is bait for glucose dependent cancer cells to take in the baking soda's high pH rush, which oxygenates cancer cells to death. It's suggested by these experts and the CancerTutor.com to limit any bicarbonate of soda therapy to three weeks at a time.

Learn more: http://www.naturalnews.com/038266_cancer_Candida_correlations.html#ixzz3TLoIrvjj

ill andida and you kill the cancer

an Candida Cause Cancer?
By Chris Woollams
Most people simply would not think that one of the first steps in a cancer prevention programme might be to cut out excess yeasts or candida infections. Certainly few oncology doctors would tell a newly diagnosed cancer patient to go on an anti-yeast, anti-candida diet. Moreover, they will probably give you antibiotics, steroids and other drugs that will only make your yeast infections worse!
However, there is a growing body of evidence that yeast infections, and particularly candida, are involved in a number of cancers. They are definitely an acknowledged problem in certain cancer treatments, for example in Multiple Myeloma and Leukaemia, a by-product of the heavy drug routine and the lack of a strong immune system.
But could yeasts and candida actually lie behind many cancers, far more than Doctors would expect? Could they even be the cause of a cancer? Or a factor that could drive the disease as it progresses?
Try this for size:  Cancer patients undergoing radio or chemotherapy did not finally succumb to the cancer itself, but to an infestation of candida albicans. That was taken from Contemporary Oncology Magazine 1993 in the USA.
This is one article about the possibility that common yeasts, which can show as symptoms like thrush, cystitis, yellow toe nails and/or bloating after meals, can develop in the body to become serious candida albicans infections. These thrive in a low oxygen environment (as do cancers) and produce toxic by-products that can both feed and stimulate cancers. The article, about the work of Gerald Green, will even give you a simple anti-candida diet. (Readers might also look at a further
Candida, yeast infection and cancer
I have a wonderful job. I meet so many interesting people, so many experts all on the same mission - helping people beat cancer. One minute its Charlotte Gerson, then Dr Contreras. I may get a complex soon though; none of Britains top orthodox doctors ever seem to ring me up to tell me of their latest work, which is very sad because icon now goes out to over 450,000 readers every issue in over 500 hospitals, oncology units,complementary centres and health centres in UK libraries.
Open quotesIt is estimated that 70 per cent of the British population     
   have a yeast infectionClose quotes


One gentleman, with whom I have been corresponding, is Gerald Green, a medical herbalist and immunologist in Bexhill, Sussex. His grandfather (Professor Fritz Hber 1868-1934) won a Nobel Prize and was one of Germanys finest scientists. Energy and investigative endurance clearly run in the family. Gerald has devoted a large part of his life to studying candida.

It is estimated that 70 per cent of the British population have a yeast infection. The primary cause of this is our love of antibiotics. Swollen glands? Take antibiotics. Tonsillitis? Take antibiotics. Are you allergic to antibiotics? If the answer is no, thats fine. Antibiotics have no side effects. Who says?
So would you be surprised if I told you that The Journal of the American Medical Association (Feb 18th 2004; 291; 827-35) has reported a study on 10,000 women in which women who took over 500 days of antibiotics in a 17 year period (dubbed 25 plus doses) had twice the risk of breast cancer as those that took none at all. Even women taking just ONE DOSE had a statistical risk increase to 1.5 times. This followed worrysome findings in Finland in 2000.

Friendly Bacteria

Apart from a minor problem that they may well be toxic to brain cells (Drs Goldman & Klatz - US), antibiotics kill many strains of bacteria in the body, including the ones you need; the friendly ones in the gut.
Friendly bacteria? Youve probably heard of acidophilus, or bifidobacteria? Your gut actually contains about 800 different strains, 400 of which have been identified. Roughly 12 come up time and time again in research and, for example,
        1 They are known drivers of 85 per cent of your immune system - they act by stimulating it to produce antibodies
        2 They help you cut up your foods and release important (and anti-cancer) vitamins like biotin, folic acid, B-12 and vitamin K.
        3 They help you eliminate carcinogenic hormones and chemicals like oestrogen, nitrosamines, cadmium and mercury
        4 They even produce an anti-cancer chemical from your foods
        5 Their favourite foods are whole foods and whole grains - and candida albicans and microbes


Open quotesAntibiotics kill most of the bacteria in the body,
                                including the ones you needClose quotes
At night they can digest roughly 2.2 kilograms of yeasts and microbes for you. They are your first line of defence.
They have inhabited our bodies for thousands of years. They help us, and in return we give them a nice cosy place to live.
Except we dont anymore. We have broken our lifetime deal with them. We no longer feed them their favourite fibre-full, whole foods. And we eat too much salt, drink alcohol and chlorinated water that changes our stomachs acidity and harms them and reduces their action. Worse we eat food with antibiotics in  it and take drugs, both of which can kill them.
We live our lives with acid bodies caused by poor diet and stress, and this will stop them working to their full efficiency. These friendly bacteria thrive in alkaline bodies. (To read more on acid bodies and cancer - click here)
And to make matters worse we feed their enemies - yeasts and candida love sugar and dairy!
Stress and poor diet can eliminate most in just a few days, so you are wise anyway to take a daily multi-strain probiotic.
(To Read More On Beneficial Bacteria - click here)

Diet

It is easy to see how yeasts have taken a hold in the Western world. The US and UK diets are simply weak in the foods that keep yeasts under control. My Thai wife used to live in a country with a trillion such microbes lounging on every street corner, but in a Thai diet rich in coconut (caprylic acid), garlic, chillies and bee propolis, foods are natural controllers of yeasts. Once we ate raw honey, but now our diets merely help to propagate them. High sugar drinks, snacks, fast food, alcohol, refined wheat, indeed any high glycaemic food, feed the yeasts. And we live in high glycaemic land in the West.

Yeasts Are Parasites

Over the last 80 years several people have had theories about parasites and their cause of cancer. By and large they have been ridiculed. But why? Dr Hulda Clarke wrote a book The cure for all cancers in which she stated her belief that all cancers had parasites at their root cause. And that the growth of modern chemicals in our blood streams meant these parasites could avoid the need for a second host. Another who had a parasite theory was Dr Royal Rife back in the 1930s. He identified 40 or so viruses or factors at the heart of different cancer cells and even used some to infect healthy cells. Both these Doctors developed frequency devises to kill these infections and leave the surrounding body cells intact. This is not madness as some would have it; the Russians are perfecting exactly the same sort of zappers.
In the 1970s several research centres looked for viruses as the cause of cancer but their equipment and technology was too limited. But now there is greatly renewed interest. A bacterium, Helicobacter pylori, has been found to cause stomach ulcers and since 2001 it has been seen as the cause of stomach cancers. Humanpapilloma virus (HPV) is known to cause cervical cancer. And in June 2006 Cancer Watch at long last researchers have found what we have been saying for years - infections of microbes in the intestines cause colon cancer. (They deplete folate and B-12 levels, cause inflammation etc etc). But viruses, microbes and bacteria are simply parasites by another name, and even Cancer Research UK now believes that 15 per cent of all cancers may have infection as a cause. I think - as a general debilitating and contributory factor - this is way too low, but its good to see it on the radar screens.
Of course, if viruses were at the root of cancers there would be a real need to develop lots and lots of vaccines for us all to take - but that is another story.
So why ignore yeasts?? Maybe because antibiotics are the big blame factor that no one dare own up to??

Yeasts Cause Other Illnesses

Diabetes is a well studied disease. Arthritis is probably less clear. But recently research in the USA showed that taking cinnamon could - in some people - significantly reduce the symptoms of both diseases. Why? Well one theory - although not proposed by the researchers in either case, is that yeast infections eventually move across the gut lining and into the blood system. Every cell has large numbers of receptor sites on the cell wall which it needs to function properly. In non-diabetics, insulin alights on some receptors, for example, to take glucose out of the blood and into the cells.
But what if the receptors are blocked with yeasts? In the past 5 years two Nobel prizes were won by people showing how these receptor sites could become blocked and thus cells could not communicate very well. One reason for this blocking was that carbohydrate could make them sticky and what stuck to them? Yeasts.
Now, theres many a nutritionist that knows what these scientists dont know. Namely that cinnamon will help kill yeasts in the blood stream. So now you can see why some people may well benefit. The receptor sites for insulin become unblocked. And although taking cinnamon is officially credited with glucose control in the blood stream, you can see that the research results that cinnamon benefited 25 per cent of diabetics may have had nothing to do with sugar directly, but by unblocking receptor sites the insulin could suddenly work again and thus, indirectly, blood sugar was lowered.
(You may also want to know that the Nobel Prize winners suggested that polysaccharides and glycoproteins could also help clean up cell membranes. Think medicinal mushrooms, aloe vera, brown rice, apples, onions, garlic - but this can be found elsewhere on the site)

A Cause of Cancer?

I like Gerald Green. Of course, Im biased. I always like people who share my views We seem to have two views in common.
  • Candida is a part of the cause of most, if not all cancers.
  • Doctors rarely, if ever, stop to think about candida, or parasite infection. And as a result their medicines only treat part of the cancer equation. In other walks of life it would be called: "Neglect". There, Ive said it.
I recently went to a cancer clinic in the USA, and to the Dove Clinic in the UK. At both I talked to the nurses.
Open quotesEvery Cancer patient they see, man or woman, has bad candidaClose quotes
They were unanimous. Every cancer patient they see, man or woman, has bad candida. Whether it is breast cancer or prostate cancer. (It is most definitely true for my daughter with her brain tumour too).
The problem is that these yeasts get everywhere. Whilst they might start off in your gut, they soon pass into the blood stream and then, like Alien, they are loose in the mother ship. And they make an alcohol as a by-product of their very existence, and this alcohol feeds cancer cells. Moreover Yeasts are anaerobes - they dont use oxygen to metabolise and survive. If they move round your body and colonise an area of your breast or prostate they set up anaerobic conditions. And cancer thrives in situations where oxygen levels are lowered.

Cancer Treatments Make Matters Worse!

To repeat: "cancer treatments make matters worse!" Steroids and chemotherapy, for example, both heighten the effect of the yeasts, worsening the cancer cell feeding. Its like throwing babies to the sharks.
But dont take my word for it, as I started the article above, try this comment from the prestigious US magazine Contemporary Oncology as long ago as April 1993: Cancer patients undergoing radio or chemotherapy did not finally succumb to the cancer itself, but to an infestation of candida albicans.

Take Action

So back to the expert Mr Green. (And he is an expert. I have seen the letters he receives from hospitals and microbiology units saying he knows more than they do). He believes even terminal cancer patients can be saved if the root cause is candida.
He believes sufferers must immediately ELIMINATE THE FOLLOWING FROM THEIR DIET:
All cows milk products:
cheese, yoghurt, whey. And all cows milk derivatives which are everywhere in processed food.
Carrots
Yeast products:
alcohol, bread, Marmite, Oxo, Bovril, vinegars, mushrooms, processed and smoked fish and meats.
All sugar products:
honey, fructose, lactose, glucose, dextrose and sweeteners like Nutrisweet and Canderel.
Nearly all fruit:
overripe fruits are full of sugar and yeasts. Plus vegetables like courgettes, pumpkin, squash, marrow.
High sugar root vegetables:
carrots, parsnips, sweet potatoes, beetroots, (maximum 1 potato per day).
Personally, I would add all high glycaemic foods to this list, e.g. refined wheat, rice, pasta, fizzy soft drinks, fruit juices and squash, biscuits, pastries, pies and corn. Gerald mentions most of these too in his diet and he suggests you avoid all pulses, processed meats, high salt foods and hydrogenated vegetable oils too.
Below you will find his list of Good Food Choices.
His sweetener of choice is Stevia, a herb 100 times sweeter than sugar but a natural anti-fungal agent.
He recommends astragalus and echinacea pIus 1 gm vitamin C daily to boost the immune system. (Gerald does a lot of work with cancer patients, MS, Crohns and Lupus sufferers too).

Good Food Choices

EAT PLENTY OF THE FOLLOWING FOODS:
Broccoli
Alfalfa sprouts
Bean sprouts
Bell peppers (sweet peppers)
Bok choy
Broccoli
Brussel sprouts
Cabbage
Cauliflower
Celery
Cucumber
Endive
Fennel
Garlic
Green beans
Hot chilli peppers
Kale
Lettuce
Onions
Parsley
Radishes
Spring onions
Spinach
Swiss chard
Turnips
Yellow beans
Cod liver oil
FATS (in moderation):
Granose sunflower margarine
Tomor kosher margarine (both these margarines should be available at your local health food shop)
Avocado oil
Fish oil
Flaxseed oil
Grapeseed oil
Hemp oil
Mayonnaise
Monounsaturated fats
Olive oil
Primrose oil
FLUIDS
Try to drink eight glasses of water each day.
Herbal teas are acceptable
PROTEINS
Free range eggs
Fresh fish and seafood
Pork, lamb, veal
Poultry: chicken, turkey (particularly skinless white meat)
Game
Tofu
Quorn
5oy milk/cheeses (in moderation)
Rice milk
Sheeps milk/cheeses (dilute sheeps milk 50/50 with water and it will taste the same as cows milk)
Goats milk/cheeses
Culinary herbs and spices


Gerald GreenPersonally, I would add that garlic, caprylic acid, oregano and Pau DArco are all excellent yeast raiders and can be found in proprietary High Street brands from stores like Holland and Barratt.
However, the natural compound par excellence that helped me personally when all the experts in Harley Street had failed was Neways Parafree, a purge that contains all natural ingredients and the things parasites hate.
Gerald Greens favourite natural destroyer is Wormwood, and again I agree and add it to my Parafree course. Wormwood is a natural herb and is now fast replacing poorer performing anti-Malarial Drugs in the world. It is very effiecient.
Finally I believe people should not confine themselves to just one strain of probiotic - there are several available that offer 6 or 7 strains. (Neways Advanced Probiotic is my favourite).
Chlorella is a supplement that seems to enhance the action of probiotics and the natural flora in the gut. And I believe fish oils can help too.
Astragalus and Echinacea tinctures, plus Wormwood, Parafree and Neways Advanced Probiotic are all available in the Natural Selection Products of Choice shop, attached to this site. Simply click SHOP at the top of this page or click here. Reviews of herbs etc can be found in our Nutritionals section, under Complementary and Alternative Treatments.
Readers are also advised to look at our article on Beneficial Bacteria.
Gerald has just published new book called "Breaking Through the Untouchable Diseases". This along with multi-strain probiotics and other products mentioned here can be found in the Natural Selection shop.


Until they connect Candida and cancer they will never cure it

Fungus and Cancer: Candida And Fungal Infections May Cause Cancer...

Eliminating These Fungal Infections Is Vital For Getting Rid Of Cancer

Fungus and Cancer - Candida
Fungus and Cancer - The Candida Fungus

Some doctors theorize that candida or other systemic fungal infections cause or at the very least contribute to the development of cancer. When you examine the link between fungus and cancer further, this makes sense. A body wide candida infection plays havoc on the immune system. Not only does the immune system become overwhelmed and worn out from fighting the infection, but candida (or other fungus) excrete toxins that further weaken and harm the body.
The major waste product of candida is acetaldehyde, which produces ethanol. Ethanol may be great in cars, but in your body it causes excessive fatigue, and reduces strength and stamina. In addition, it destroys enzymes needed for cell energy, and causes the release of free radicals that can damage DNA.
Ethanol also inhibits the absorption of iron. Because iron is one of the most important oxygen supports in the blood, ethanol in your body creates low oxygen levels. And you know what happens when your body can't oxygenate well. Deal with candida if you want to beat cancer.
 
There is a simple test to tell if you have candida overgrowth.
 
First thing in the morning, before you put ANYTHING in your mouth, get a clear glass of water. Better still; leave it by your bed the night before. Work up a bit of saliva, and then spit it into the glass of water.
Check the water every 15 minutes or so for up to one hour. If you have a candida yeast infection, strings (like legs) will travel down into the water from the saliva floating on top, or "cloudy" saliva will sink to the bottom of the glass, or cloudy specks will seem to be suspended in the water. If nothing develops in 30 to 45 minutes, you are probably candida free.
Some doctors implicate fungi as a cause of leukemia. In 1999 Meinolf Karthaus, MD, watched three different children with leukemia suddenly go into remission upon receiving a triple antifungal drug cocktail for their "secondary" fungal infections.
In 1997 Mark Bielski stated that leukemia, whether acute or chronic, is intimately associated with the yeast, Candida albicans, which mutates into a fungal form when it overgrows.
Milton White, MD. believed that cancer is a chronic, infectious, fungus disease. He was able to find fungal spores in every sample of cancer tissue he studied. Some other doctors agree with him. Such as the Italian doctor who has his patients take a teaspoon of bicarbonate of soda, baking soda, in a glass of water half an hour before breakfast. This alkalinized the digestive tract so that it would help eliminate candida.
Also advocating the fungus and cancer connection, Author Doug Kaufmann asserts that fungi in foods may play a role in cancer. He has seen children become free of their documented leukemia once the child's parents simply changed the child's diet. Kaufmann's diet is base on the widely published problem of mycotoxin contamination of our grain foods.
Grains such as corn, wheat, barley, sorghum, and other foods such as peanuts, are commonly contaminated with cancer-causing fungal poisons called mycotoxins. One of them, called aflatoxin, just happens to be the most carcinogenic substance on earth.
He says we consume, on average, from 0.15mg to 0.5mg of aflatoxin per day. So it is not sugar alone that is the problem in our western diet, but fungal toxins that are found in the sugary grains. More than once has Kaufmann interviewed a caller (on his health talk show) who absolutely craved peanut butter and popcorn just prior to their diagnosis of cancer.
Kaufmann feels that antibiotics may play a role in this. Antibiotics destroy the normal, protective gut bacteria, allowing intestinal yeast and fungi to grow unchecked. Resulting in Candida overgrowth. This can lead to immune suppression, symptoms of autoimmune diseases, or even cancer.
"If the onset of any symptom or disease, cancer included, was preceded by a course of antibiotics," he says, "then look for a fungus to be at the root of your problem."
 
Getting Rid of Candida & Fungal Infections
The two best supplements that fight the Candida fungus and cancer are CandElim and CandiClear5. CandiClear5 is particularly good for Colon Cancers.
 
CandElim
CandElim is based on two types of proven candida fungus and cancer fighters.
  1. Small amounts of essential oils specially processed, supercharged and combined with additional energies.
  2. An energetic frequency enhanced water elixir that disrupted and killed candida without causing much die off.
For several years some of the top pathogen and cancer fighters -- killing bad bacteria, viruses, mycoplasma, candida or other fungal infections, and cancer, were essential oil elixirs such as Azovin, and Zernix . They use a combination of specially processed essential oils made using unique patent pending methods that greatly enhance their effectiveness in the body. So much so that only small amounts are used. These are combined with specific energetic vibrational frequencies that on their own disrupt and kill candida. These work synergistically with the essential oils to increase their effectiveness. They also boost the immune system response so that it will more effectively fight the candida fungus and cancer.
Not only were all the energies in the second supplement, Custom Elixir Y, used to make CandElim, but many more vibrational frequencies were added to it. And then a much more potent laser technology was used to concentrate and stabilize the frequencies in the water.
Deactivate Candida Spores.
The reason candida is so hard to get rid of is that when you've had chronic candida your body is loaded with candida spores. Spores are released by candida as part of their reproductive cycle. They grow into new candida when the time is right. You can kill all your active candida, but as soon as conditions again become optimal for candida, those spores activate, and back comes your candida.
CandElim stops this process. Once it deactivates the candida spores, they won't be creating more candida in your body at the first chance. CandElim stops this process. Once it deactivates the candida spores, they won't be creating more candida in your body at the first chance. At long last, you may be able to get rid of your candida -- and keep it gone.

CandElim attacks candida everywhere in the body, preventing the yeast from going dormant, where they hide out from the immune system and candida-killing herbs.
Once you've wiped out the active candida overgrowth, killed the dormant candida in your body, deactivated the candida spores, and replenished the intestinal flora -- it becomes MUCH harder for candida to overgrow and wreck havoc in your body.
Another great candida fungus and cancer fighter is...
 CandiClear5
The main ingredient in CandiClear5 is a special organic fossilized freshwater Phytoplankton that shreds up any parasites and candida that come in contact with it. It does a superb job of killing candida and is excellent for cancer. Plus, its porous structure absorbs toxins and waste debris to help reduce die-off symptoms from the candida kill-off.
You get a large amount, 8.4 grams, of phytoplankton per 20 gram serving.
The other main ingredient in CandiClear5 is 4.6 grams of air- filtered Pyrophyllite powder. The primary function of Pyrophyllite in CandiClear5 is to remove toxins. It does this because of its high mineral content, which bonds to the toxins and pulls them out of the body.
In addition, the mineral and electrolyte content also help to rebalance your body's nutrients and provide protection against future toxicity. Providing sufficient nutrient balance in the body, this clay will continue to bond with freestanding heavy metals and convert them into benign or beneficial compounds.
Pyrophyllite is considerably more effective at supporting overall health and detoxification that the zeolite powder previously used in CandiClear5.
L-Malic Acid -- 520 mgs
L-malic acid is naturally present in all body cells. It is an intermediate product of the Krebs Cycle, boosting the body's most effective way to convert glucose to cellular energy (ATP). L-malic acid is involved in gluconeogenesis, the metabolic pathway which creates glucose for the brain.
Supplemental L-Malic acid helps support your body's energy production.
Malic acid has been shown to benefit:

* Digestion, it supplies the hydrogen necessary to trigger the release of pepsin, and plays important roles in producing appropriate stomach acidity.
* Metabolism and energy production in the cells. It boosts/catalyzes aerobic Krebs Cycle (producing more ATP)
* pH modulation as it helps keep lactic acid levels under control.
* Detoxification. Malic acid may also assist cellular detoxification of toxic metals, particularly aluminum and strontium.
The third major addition to CandiClear5 is 520 mgs. of Calcium D-Glucarate.

Calcium D-Glucarate specifically supports the liver and optimizes the body's ability to eliminate toxins and other adverse substances. It has been shown to enhance the major detoxification pathways in the body. The 520 mg serving size is equivalent to the phytonutrient activity found in 82 pounds of fresh fruits and vegetables. Without enough glucarate, neatly packaged poisons can become unravelled and re-enter the circulatory system.
CandiClear5 also contains Vitamin C 400mg, Vitamin B 6 (with P5P) 60mg, Zinc (picolinate) 280 mg - (suppliying 56 mg. Elemental zinc.) all of which serve to boost the immune system's response against candida, or directly kill the yeast. Note: Zinc Picolinate is 20% zinc, providing 56 mg zinc, or 350% of RDA -- an effective, but still relatively low therapeutic level.
It also includes a proprietary blend of 5400 mg per serving of 14 other ingredients with immune boosting, candida killing and anti-inflammatory properties including:
Xylitol, a sweetener that does not feed candida, but actually has proven ability to kill it.
Organic Burdock Root, Organic Cinnamon, Barley Grass concentrate 10:1, Broccoli Sprout concentrate, Parsley concentrate 4:1, Astragalus 5:1, the very important Russian Alagan 10% DHQ that is fights candida, Polycil humic and fulvic acid formula. All of these boost the immune system response against candida, or directly kill candida. Aulterra powder is added to increase the absorption of these ingredients in your body. Apple Cider Vinegar powder helps to alkalize your body and makes it even more effective. It's pH balancing action is valuable for cancer too.
It is NOT FOR DOGS as they should not eat xylitol.
For fighting cancer, CandiClear5 energetically tests at 863. It is especially valuable for colon, stomach and rectal cancers where more of the fossilized phytoplankton and zeolite powder will be working on the cancer.
Even the baking soda and water will help, though not as well orally as the pH Balancer 8.0. Here's a bit more on that story.
 
One Italian doctor, Dr. Tullio Simoncini, has a theory that all cancer is caused by candida. The candida fungus forms a vital role in cancer's ability to survive. Candida makes toxins that impair the apoptosis process, which allows cells to become cancerous. And they intertwine with tumors, protecting them with a positively charged acid glue that holds candida (and the tumors) together.
His original solution, drink a teaspoon of baking soda (bicarbonate of soda) in a glass of water half an hour before every meal. It pulls acids out of the cancer cells, and neutralizes the acid glue holding the candida together. Without the candida to protect the cancer, cancers self-destruct.
This is simple and cheap. As we mentioned before, it comes in at 142 for fighting cancer in our energetic testing. He reported many remissions using this procedure. Now a few doctors in Italy inject pharmaceutical grade bicarbonate of soda into tumors - with better results. Tumors can disappear within days or weeks. His breast cancer protocol call for surrounding a breast tumor with up to 120 cc of 5% sodium bicarbonate solution daily if tolerated. After several sessions most local cancers are gone. A lot better than surgery! Energetic testing puts this procedure at a very good 431.
For distant cancers use IV's to get it into the body. 500 cc of a 5% bicarbonate solution over about one hour. Best if it is in an artery leading to the tumor. Unfortunately, you're not likely to be able to get your oncologist to try either of these.
If you aren't taking the more potent pH Balancer 8.0, make sure you are taking a teaspoon of baking soda in a glass of water about half an hour before each meal.
If you have no money at all, you can increase the potency by using 2 teaspoons of baking soda in a quart of water. Drink 5 quarts a day of this mixture. 230. (And make sure you are eating about a cup of freshly ground up flax seeds daily blended in an equal amount or more of cottage cheese or yogurt.) 201 in our energetic testing.
So you may not need to take any additional supplements for candida if you are taking the OxyDHQ and pH Balancer 8.0 or doing the baking soda regime. However, candida overgrowth and chemotherapy both kill off your friendly bacteria.
Lack of friendly bacteria allows the candida to quickly and easily regrow. Friendly bacteria may be involved in as much as 70% to 80% of your immune system response. Getting these friendly bacteria back into your system right away, or at the very least a bit later on, is important to do. The probiotic we like the best for this is...
TotalFlora15
For fungus and cancer, this probiotic, unlike most probiotics, is able to kill Candida, and does an excellent job of recolonizing the intestinal tract with 15 billion friendly bacteria per capsule. Even in the presence of candida. There are estimated to be one hundred trillion bacteria living inside the human intestine including 500 different species. This number amounts to more than TEN TIMES the number of cells you have in your whole body. These bacteria together weigh two to three pounds and could be considered your first organ of defense against disease.
Most of these bacteria are referred to as "good" but others provide little or no benefit. The ideal balance between them is 85% good and 15% "other". If the "others" numbers grow too large, you're not going to feel great and candida yeast or other harmful bacteria will overgrow and cause all types of health issues. This is why it is so important to help the “good” numbers stay high.
TotalFlora15 brings together two of the most widely accepted groups of probiotics - the Lactobacillus and Bifidobacterium species. They work together to maintain a balance of "good" bacteria within your digestive tract.
Fungus and Cancer - Fungal colony of Candida albicans
Fungus and Cancer - Fungal colony of Candida albicans
Also added to this combination is the Streptococcus Thermophilus, a highly versatile fast acting strain of friendly bacteria that also acts as a free radical scavenger. This additional strain works hand in hand with the 10 strains of Lactobacillus and four from the Bifidobacterium family to kick start a good bacteria bloom that promotes healthy intestinal function, and works with your immune system to inhibit candida overgrowth.
For maintenance use 2 capsules daily from this 60 capsule bottle. To fight candida double the amount to 4 capsules daily. Energetic testing puts TotalFlora15 at 324 for its ability to deal with cancer and 643 for its ability to deal with the candida fungus and cancer.
 
Next we go over what would be beneficial in supporting detoxification of your body.
- See more at: http://www.cancerfightingstrategies.com/fungus-and-cancer.html#sthash.uYlSYRGu.dpuf

Friday, 27 February 2015

Radiation kills good bacteria

Bifidobacteria



What is it?

Bifidobacteria are a group of bacteria that normally live in the intestines. They can be grown outside the body and then taken by mouth as medicine.

Bifidobacteria are used for many conditions affecting the intestines, including preventing diarrhea in infants and children; as well as traveler’s diarrhea in adults. Some people take bifidobacteria to restore “good bacteria” in the gut that have been killed or removed by diarrhea, radiation, chemotherapy, antibiotics, or other causes. Bifidobacteria are also used to treat a bowel disease called ulcerative colitis, as well as a condition called pouchitis, which sometimes develops after surgery for ulcerative colitis. Some people use Bifidobacteria to prevent a particular bowel infection called necrotizing enterocolitis in newborns.

Other uses for Bifidobacteria include treating a skin condition in infants called atopic eczema, yeast infections (candidiasis), cold, flu, reducing flu-like symptoms in children attending day-care centers, breast pain (mastitis), hepatitis, lactose intolerance, mumps, Lyme disease, and cancer. These bacteria are also used to boost the immune system and lower cholesterol.

How effective is it?

Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely Effective, Possibly Effective, Possibly Ineffective, Likely Ineffective, Ineffective, and Insufficient Evidence to Rate.

The effectiveness ratings for BIFIDOBACTERIA are as follows:

Possibly effective for...

  • Prevention of a type of infection in the lining of the intestine caused by bacteria (necrotizing enterocolitis), when used in combination with another bacterium called Lactobacillus acidophilus.
  • Prevention of diarrhea in infants (rotaviral diarrhea), when used with another bacterium called Streptococcus thermophilus.
  • Prevention of traveler's diarrhea, when used with other bacteria such as Lactobacillus acidophilus, Lactobacillus bulgaricus, or Streptococcus thermophilus.
  • Treating a skin condition in infants called atopic eczema.
  • Irritable bowel syndrome (IBS).
  • Preventing a complication after surgery for ulcerative colitis called pouchitis.
  • Reducing side effects of treatment for the ulcer-causing bacterium Helicobacter pylori.
  • Ulcerative colitis. Some research suggests that taking a specific combination product containing bifidobacteria, lactobacillus, and streptococcus might help control symptoms and prevent their recurrence.
  • Lung infections. Some research suggests that taking a specific combination product containing Lactobacillus acidophilus and Bifidobacterium (HOWARU Protect) with milk might help reduce symptoms of fever, cough, runny nose, and decrease the amount of antibiotics needed in children. It may also shorten how long children have symptoms and decrease the number of days missed from daycare.

Insufficient evidence to rate effectiveness for...

  • Common cold and flu (influenza).
  • Diarrhea caused by antibiotics. So far, some studies have found Bifidobacterium effective for this use, but other study results have not agreed.
  • Liver problems.
  • High cholesterol.
  • Lactose intolerance.
  • Breast pain, possibly due to infection (mastitis).
  • Mumps.
  • Cancer.
  • Stomach problems.
  • Replacing beneficial bacteria removed by diarrhea.
  • Chemotherapy.
  • Lyme disease.
  • Constipation. Some preliminary research shows that taking a specific Bifidobacterium breve product (Yakult Co., Japan) can reduce constipation in children 3-16 years of age.
  • Preventing infections after exposure to radiation. There is preliminary evidence that antibiotic-resistant Bifidobacterium longum can help improve short-term survival in the treatment of radiation sickness. In combination with antibiotics, bifidobacteria appear to help prevent dangerous bacteria from growing and causing a serious infection.
  • Aging.
  • Other conditions.
More evidence is needed to rate bifidobacteria for these uses.

How does it work?

Return to top
Bifidobacteria belong to a group of bacteria called lactic acid bacteria. Lactic acid bacteria are found in fermented foods like yogurt and cheese. Bifidobacteria are used in treatment as so-called “probiotics,” the opposite of antibiotics. They are considered "friendly" bacteria and are taken to grow and multiply in areas of the body where they normally would occur. The human body counts on its normal bacteria to perform several jobs, including breaking down foods, helping the body take in nutrients, and preventing the take-over of “bad” bacteria. Probiotics such as bifidobacteria are typically used in cases when a disease occurs or might occur due to a kill-off of normal bacteria. For example, treatment with antibiotics can destroy disease-causing bacteria, but also normal bacteria in the GI (gastrointestinal) and urinary tracts. The theory is that taking Bifidobacterium probiotics during antibiotic treatment can prevent or minimize the death of good bacteria and the take-over by bad bacteria.

Are there safety concerns?

Return to top
Bifidobacteria are LIKELY SAFE for adults and children when used appropriately. In some people, treatment with bifidobacteria might upset the stomach and intestine, causing bloating and gas.

Special precautions & warnings:

Pregnancy and breast-feeding: Not enough is known about the use of bifidobacteria during pregnancy and breast-feeding. Stay on the safe side and avoid use.

Weakened immune system: There is some concern that “probiotics” might grow too well in people with a weak immune system and cause infections. Although this has not occurred specifically with bifidobacteria, there have been rare cases involving other probiotic species such as lactobacillus. If you have a weakened immune system (e.g., you have HIV/AIDS or are undergoing cancer treatment), check with your healthcare provider before using bifidobacteria.

Are there interactions with medications?

Return to top

Moderate

Be cautious with this combination.

Antibiotic drugs
Antibiotics are used to reduce harmful bacteria in the body. Antibiotics can also reduce friendly bacteria in the body. Bifidobacteria are a type of friendly bacteria. Taking antibiotics along with bifidobacteria might reduce the effectiveness of bifidobacteria. To avoid this interaction, take bifidobacteria products at least two hours before or after antibiotics.

Are there interactions with herbs and supplements?

Return to top
There are no known interactions with herbs and supplements.

Are there interactions with foods?

Return to top
There are no known interactions with foods.

What dose is used?

Return to top
The strength of bifidobacteria preparations is usually quantified by the number of living organisms per dose. The following doses have been studied in scientific research:

BY MOUTH:
  • For irritable bowel syndrome: 1 billion cells of Bifidobacterium infantis daily in a malted milk drink.
  • For lung infections in children: 120 mL of milk twice daily containing 5 billion colony forming units each of Lactobacillus acidophilus and Bifidobacterium contained in a specific product (HOWARU Protect, Danisco).
  • For chronic pouchitis: a dose of 600 billion bacteria consisting of species of Lactobacillus, Bifidobacterium, and Streptococcus (VSL#3) given once daily.
  • For Helicobacter pylori treatment: a dose of 5 billion bacteria consisting of Bifidobacterium lactis and Lactobacillus acidophilus once daily.
  • For constipation: 1-100 billion cells of a specific Bifidobacterium breve powder (Yakult Co., Japan) once daily.
  • For ulcerative colitis:
    • 100 mL per day of a specific fermented milk product (Yakult Co., Japan) containing at least 10 billion live Bifidobacterium breve, Bifidobacterium bifidum, and Lactobacillus acidophilus strains per dose has been used.
    • 3 grams of a specific combination probiotic containing living freeze-dried bacteria species including lactobacillus, bifidobacteria, and streptococcus (VSL#3) twice daily has also been used.

Other names

Return to top
B. Bifidum, B. Breve, B. Infantis, B. lactis, B. Longum, Bifido, Bifido Bacterium Longum, Bifidobacterias, Bifidobactérie, Bifidobactéries, Bifidobacterium, Bifidobacterium adolescentis; Bifidobacterium animalis, Bifidobacterium bifidum; Bifidobacterium breve; Bifidobacterium infantis; Bifidobacterium lactis; Bifidobacterium longum, Bifidum, Bifidus, Bifidus Brevis, Bifidus Infantis, Bifidus Longum, Bifidobacteria Bifidus, Lactobacillus Bifidus, L. Bifidus, Probiotic, Probiotique.

The immune system - are modern day surroundings i.e technology interfering with our health balance

The immune system is a system of biological structures and processes within an organism that protects against disease. To function properly, an immune system must detect a wide variety of agents, known as pathogens, from viruses to parasitic worms, and distinguish them from the organism's own healthy tissue. In many species, the immune system can be classified into subsystems, such as the innate immune system versus the adaptive immune system, or humoral immunity versus cell-mediated immunity.
Pathogens can rapidly evolve and adapt, and thereby avoid detection and neutralization by the immune system; however, multiple defense mechanisms have also evolved to recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess a rudimentary immune system, in the form of enzymes that protect against bacteriophage infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants and insects. These mechanisms include phagocytosis, antimicrobial peptides called defensins, and the complement system. Jawed vertebrates, including humans, have even more sophisticated defense mechanisms,[1] including the ability to adapt over time to recognize specific pathogens more efficiently. Adaptive (or acquired) immunity creates immunological memory after an initial response to a specific pathogen, leading to an enhanced response to subsequent encounters with that same pathogen. This process of acquired immunity is the basis of vaccination.
Disorders of the immune system can result in autoimmune diseases, inflammatory diseases and cancer.[2][3] Immunodeficiency occurs when the immune system is less active than normal, resulting in recurring and life-threatening infections. In humans, immunodeficiency can either be the result of a genetic disease such as severe combined immunodeficiency, acquired conditions such as HIV/AIDS, or the use of immunosuppressive medication. In contrast, autoimmunity results from a hyperactive immune system attacking normal tissues as if they were foreign organisms. Common autoimmune diseases include Hashimoto's thyroiditis, rheumatoid arthritis, diabetes mellitus type 1, and systemic lupus erythematosus. Immunology covers the study of all aspects of the immune system.


History of immunology[edit]

For more details on this topic, see History of immunology.
Immunology is a science that examines the structure and function of the immune system. It originates from medicine and early studies on the causes of immunity to disease. The earliest known reference to immunity was during the plague of Athens in 430 BC. Thucydides noted that people who had recovered from a previous bout of the disease could nurse the sick without contracting the illness a second time.[4] In the 18th century, Pierre-Louis Moreau de Maupertuis made experiments with scorpion venom and observed that certain dogs and mice were immune to this venom.[5] This and other observations of acquired immunity were later exploited by Louis Pasteur in his development of vaccination and his proposed germ theory of disease.[6] Pasteur's theory was in direct opposition to contemporary theories of disease, such as the miasma theory. It was not until Robert Koch's 1891 proofs, for which he was awarded a Nobel Prize in 1905, that microorganisms were confirmed as the cause of infectious disease.[7] Viruses were confirmed as human pathogens in 1901, with the discovery of the yellow fever virus by Walter Reed.[8]
Immunology made a great advance towards the end of the 19th century, through rapid developments, in the study of humoral immunity and cellular immunity.[9] Particularly important was the work of Paul Ehrlich, who proposed the side-chain theory to explain the specificity of the antigen-antibody reaction; his contributions to the understanding of humoral immunity were recognized by the award of a Nobel Prize in 1908, which was jointly awarded to the founder of cellular immunology, Elie Metchnikoff.[10]

Layered defense[edit]

The immune system protects organisms from infection with layered defenses of increasing specificity. In simple terms, physical barriers prevent pathogens such as bacteria and viruses from entering the organism. If a pathogen breaches these barriers, the innate immune system provides an immediate, but non-specific response. Innate immune systems are found in all plants and animals.[11] If pathogens successfully evade the innate response, vertebrates possess a second layer of protection, the adaptive immune system, which is activated by the innate response. Here, the immune system adapts its response during an infection to improve its recognition of the pathogen. This improved response is then retained after the pathogen has been eliminated, in the form of an immunological memory, and allows the adaptive immune system to mount faster and stronger attacks each time this pathogen is encountered.[12]
Components of the immune system
Innate immune systemAdaptive immune system
Response is non-specificPathogen and antigen specific response
Exposure leads to immediate maximal responseLag time between exposure and maximal response
Cell-mediated and humoral componentsCell-mediated and humoral components
No immunological memoryExposure leads to immunological memory
Found in nearly all forms of lifeFound only in jawed vertebrates
Both innate and adaptive immunity depend on the ability of the immune system to distinguish between self and non-self molecules. In immunology, self molecules are those components of an organism's body that can be distinguished from foreign substances by the immune system.[13] Conversely, non-self molecules are those recognized as foreign molecules. One class of non-self molecules are called antigens (short for antibody generators) and are defined as substances that bind to specific immune receptors and elicit an immune response.[14]

Innate immune system[edit]

For more details on this topic, see Innate immune system.
Microorganisms or toxins that successfully enter an organism encounter the cells and mechanisms of the innate immune system. The innate response is usually triggered when microbes are identified by pattern recognition receptors, which recognize components that are conserved among broad groups of microorganisms,[15] or when damaged, injured or stressed cells send out alarm signals, many of which (but not all) are recognized by the same receptors as those that recognize pathogens.[16] Innate immune defenses are non-specific, meaning these systems respond to pathogens in a generic way.[14] This system does not confer long-lasting immunity against a pathogen. The innate immune system is the dominant system of host defense in most organisms.[11]

Surface barriers[edit]

Several barriers protect organisms from infection, including mechanical, chemical, and biological barriers. The waxy cuticle of many leaves, the exoskeleton of insects, the shells and membranes of externally deposited eggs, and skin are examples of mechanical barriers that are the first line of defense against infection.[14] However, as organisms cannot be completely sealed from their environments, other systems act to protect body openings such as the lungs, intestines, and the genitourinary tract. In the lungs, coughing and sneezing mechanically eject pathogens and other irritants from the respiratory tract. The flushing action of tears and urine also mechanically expels pathogens, while mucus secreted by the respiratory and gastrointestinal tract serves to trap and entangle microorganisms.[17]
Chemical barriers also protect against infection. The skin and respiratory tract secrete antimicrobial peptides such as the β-defensins.[18] Enzymes such as lysozyme and phospholipase A2 in saliva, tears, and breast milk are also antibacterials.[19][20] Vaginal secretions serve as a chemical barrier following menarche, when they become slightly acidic, while semen contains defensins and zinc to kill pathogens.[21][22] In the stomach, gastric acid and proteases serve as powerful chemical defenses against ingested pathogens.
Within the genitourinary and gastrointestinal tracts, commensal flora serve as biological barriers by competing with pathogenic bacteria for food and space and, in some cases, by changing the conditions in their environment, such as pH or available iron.[23] This reduces the probability that pathogens will reach sufficient numbers to cause illness. However, since most antibiotics non-specifically target bacteria and do not affect fungi, oral antibiotics can lead to an "overgrowth" of fungi and cause conditions such as a vaginal candidiasis (a yeast infection).[24] There is good evidence that re-introduction of probiotic flora, such as pure cultures of the lactobacilli normally found in unpasteurized yogurt, helps restore a healthy balance of microbial populations in intestinal infections in children and encouraging preliminary data in studies on bacterial gastroenteritis, inflammatory bowel diseases, urinary tract infection and post-surgical infections.[25][26][27]

Inflammation[edit]

For more details on this topic, see Inflammation.
Inflammation is one of the first responses of the immune system to infection.[28] The symptoms of inflammation are redness, swelling, heat, and pain, which are caused by increased blood flow into tissue. Inflammation is produced by eicosanoids and cytokines, which are released by injured or infected cells. Eicosanoids include prostaglandins that produce fever and the dilation of blood vessels associated with inflammation, and leukotrienes that attract certain white blood cells (leukocytes).[29][30] Common cytokines include interleukins that are responsible for communication between white blood cells; chemokines that promote chemotaxis; and interferons that have anti-viral effects, such as shutting down protein synthesis in the host cell.[31] Growth factors and cytotoxic factors may also be released. These cytokines and other chemicals recruit immune cells to the site of infection and promote healing of any damaged tissue following the removal of pathogens.[32]

Complement system[edit]

For more details on this topic, see Complement system.
The complement system is a biochemical cascade that attacks the surfaces of foreign cells. It contains over 20 different proteins and is named for its ability to "complement" the killing of pathogens by antibodies. Complement is the major humoral component of the innate immune response.[33][34] Many species have complement systems, including non-mammals like plants, fish, and some invertebrates.[35]
In humans, this response is activated by complement binding to antibodies that have attached to these microbes or the binding of complement proteins to carbohydrates on the surfaces of microbes. This recognition signal triggers a rapid killing response.[36] The speed of the response is a result of signal amplification that occurs following sequential proteolytic activation of complement molecules, which are also proteases. After complement proteins initially bind to the microbe, they activate their protease activity, which in turn activates other complement proteases, and so on. This produces a catalytic cascade that amplifies the initial signal by controlled positive feedback.[37] The cascade results in the production of peptides that attract immune cells, increase vascular permeability, and opsonize (coat) the surface of a pathogen, marking it for destruction. This deposition of complement can also kill cells directly by disrupting their plasma membrane.[33]

Cellular barriers[edit]

A scanning electron microscope image of normal circulating human blood. One can see red blood cells, several knobby white blood cells including lymphocytes, a monocyte, a neutrophil, and many small disc-shaped platelets.
Leukocytes (white blood cells) act like independent, single-celled organisms and are the second arm of the innate immune system.[14] The innate leukocytes include the phagocytes (macrophages, neutrophils, and dendritic cells), mast cells, eosinophils, basophils, and natural killer cells. These cells identify and eliminate pathogens, either by attacking larger pathogens through contact or by engulfing and then killing microorganisms.[35] Innate cells are also important mediators in the activation of the adaptive immune system.[12]
Phagocytosis is an important feature of cellular innate immunity performed by cells called 'phagocytes' that engulf, or eat, pathogens or particles. Phagocytes generally patrol the body searching for pathogens, but can be called to specific locations by cytokines.[14] Once a pathogen has been engulfed by a phagocyte, it becomes trapped in an intracellular vesicle called a phagosome, which subsequently fuses with another vesicle called a lysosome to form a phagolysosome. The pathogen is killed by the activity of digestive enzymes or following a respiratory burst that releases free radicals into the phagolysosome.[38][39] Phagocytosis evolved as a means of acquiring nutrients, but this role was extended in phagocytes to include engulfment of pathogens as a defense mechanism.[40] Phagocytosis probably represents the oldest form of host defense, as phagocytes have been identified in both vertebrate and invertebrate animals.[41]
Neutrophils and macrophages are phagocytes that travel throughout the body in pursuit of invading pathogens.[42] Neutrophils are normally found in the bloodstream and are the most abundant type of phagocyte, normally representing 50% to 60% of the total circulating leukocytes.[43] During the acute phase of inflammation, particularly as a result of bacterial infection, neutrophils migrate toward the site of inflammation in a process called chemotaxis, and are usually the first cells to arrive at the scene of infection. Macrophages are versatile cells that reside within tissues and produce a wide array of chemicals including enzymes, complement proteins, and regulatory factors such as interleukin 1.[44] Macrophages also act as scavengers, ridding the body of worn-out cells and other debris, and as antigen-presenting cells that activate the adaptive immune system.[12]
Dendritic cells (DC) are phagocytes in tissues that are in contact with the external environment; therefore, they are located mainly in the skin, nose, lungs, stomach, and intestines.[45] They are named for their resemblance to neuronal dendrites, as both have many spine-like projections, but dendritic cells are in no way connected to the nervous system. Dendritic cells serve as a link between the bodily tissues and the innate and adaptive immune systems, as they present antigen to T cells, one of the key cell types of the adaptive immune system.[45]
Mast cells reside in connective tissues and mucous membranes, and regulate the inflammatory response.[46] They are most often associated with allergy and anaphylaxis.[43] Basophils and eosinophils are related to neutrophils. They secrete chemical mediators that are involved in defending against parasites and play a role in allergic reactions, such as asthma.[47] Natural killer (NK cells) cells are leukocytes that attack and destroy tumor cells, or cells that have been infected by viruses.[48]

Natural killer cells[edit]

Main article: Natural killer cell
Natural killer cells, or NK cells, are a component of the innate immune system which does not directly attack invading microbes. Rather, NK cells destroy compromised host cells, such as tumor cells or virus-infected cells, recognizing such cells by a condition known as "missing self." This term describes cells with low levels of a cell-surface marker called MHC I (major histocompatibility complex) – a situation that can arise in viral infections of host cells.[35] They were named "natural killer" because of the initial notion that they do not require activation in order to kill cells that are "missing self." For many years it was unclear how NK cells recognize tumor cells and infected cells. It is now known that the MHC makeup on the surface of those cells is altered and the NK cells become activated through recognition of "missing self". Normal body cells are not recognized and attacked by NK cells because they express intact self MHC antigens. Those MHC antigens are recognized by killer cell immunoglobulin receptors (KIR) which essentially put the brakes on NK cells.[49]

Adaptive immune system[edit]

For more details on this topic, see Adaptive immune system.
The adaptive immune system evolved in early vertebrates and allows for a stronger immune response as well as immunological memory, where each pathogen is "remembered" by a signature antigen.[50] The adaptive immune response is antigen-specific and requires the recognition of specific "non-self" antigens during a process called antigen presentation. Antigen specificity allows for the generation of responses that are tailored to specific pathogens or pathogen-infected cells. The ability to mount these tailored responses is maintained in the body by "memory cells". Should a pathogen infect the body more than once, these specific memory cells are used to quickly eliminate it.

Lymphocytes[edit]

The cells of the adaptive immune system are special types of leukocytes, called lymphocytes. B cells and T cells are the major types of lymphocytes and are derived from hematopoietic stem cells in the bone marrow.[35] B cells are involved in the humoral immune response, whereas T cells are involved in cell-mediated immune response.
Both B cells and T cells carry receptor molecules that recognize specific targets. T cells recognize a "non-self" target, such as a pathogen, only after antigens (small fragments of the pathogen) have been processed and presented in combination with a "self" receptor called a major histocompatibility complex (MHC) molecule. There are two major subtypes of T cells: the killer T cell and the helper T cell. Killer T cells only recognize antigens coupled to Class I MHC molecules, while helper T cells only recognize antigens coupled to Class II MHC molecules. These two mechanisms of antigen presentation reflect the different roles of the two types of T cell. A third, minor subtype are the γδ T cells that recognize intact antigens that are not bound to MHC receptors.[51]
In contrast, the B cell antigen-specific receptor is an antibody molecule on the B cell surface, and recognizes whole pathogens without any need for antigen processing. Each lineage of B cell expresses a different antibody, so the complete set of B cell antigen receptors represent all the antibodies that the body can manufacture.[35]

Killer T cells[edit]

Killer T cells are a sub-group of T cells that kill cells that are infected with viruses (and other pathogens), or are otherwise damaged or dysfunctional.[52] As with B cells, each type of T cell recognizes a different antigen. Killer T cells are activated when their T cell receptor (TCR) binds to this specific antigen in a complex with the MHC Class I receptor of another cell. Recognition of this MHC:antigen complex is aided by a co-receptor on the T cell, called CD8. The T cell then travels throughout the body in search of cells where the MHC I receptors bear this antigen. When an activated T cell contacts such cells, it releases cytotoxins, such as perforin, which form pores in the target cell's plasma membrane, allowing ions, water and toxins to enter. The entry of another toxin called granulysin (a protease) induces the target cell to undergo apoptosis.[53] T cell killing of host cells is particularly important in preventing the replication of viruses. T cell activation is tightly controlled and generally requires a very strong MHC/antigen activation signal, or additional activation signals provided by "helper" T cells (see below).[53]

Helper T cells[edit]

Function of T helper cells: Antigen-presenting cells (APCs) present antigen on their Class II MHC molecules (MHC2). Helper T cells recognize these, with the help of their expression of CD4 co-receptor (CD4+). The activation of a resting helper T cell causes it to release cytokines and other stimulatory signals (green arrows) that stimulate the activity of macrophages, killer T cells and B cells, the latter producing antibodies. The stimulation of B cells and macrophages succeeds a proliferation of T helper cells.
Helper T cells regulate both the innate and adaptive immune responses and help determine which immune responses the body makes to a particular pathogen.[54][55] These cells have no cytotoxic activity and do not kill infected cells or clear pathogens directly. They instead control the immune response by directing other cells to perform these tasks.
Helper T cells express T cell receptors (TCR) that recognize antigen bound to Class II MHC molecules. The MHC:antigen complex is also recognized by the helper cell's CD4 co-receptor, which recruits molecules inside the T cell (e.g., Lck) that are responsible for the T cell's activation. Helper T cells have a weaker association with the MHC:antigen complex than observed for killer T cells, meaning many receptors (around 200–300) on the helper T cell must be bound by an MHC:antigen in order to activate the helper cell, while killer T cells can be activated by engagement of a single MHC:antigen molecule. Helper T cell activation also requires longer duration of engagement with an antigen-presenting cell.[56] The activation of a resting helper T cell causes it to release cytokines that influence the activity of many cell types. Cytokine signals produced by helper T cells enhance the microbicidal function of macrophages and the activity of killer T cells.[14] In addition, helper T cell activation causes an upregulation of molecules expressed on the T cell's surface, such as CD40 ligand (also called CD154), which provide extra stimulatory signals typically required to activate antibody-producing B cells.[57]

Gamma delta T cells[edit]

Gamma delta T cells (γδ T cells) possess an alternative T cell receptor (TCR) as opposed to CD4+ and CD8+ (αβ) T cells and share the characteristics of helper T cells, cytotoxic T cells and NK cells. The conditions that produce responses from γδ T cells are not fully understood. Like other 'unconventional' T cell subsets bearing invariant TCRs, such as CD1d-restricted Natural Killer T cells, γδ T cells straddle the border between innate and adaptive immunity.[58] On one hand, γδ T cells are a component of adaptive immunity as they rearrange TCR genes to produce receptor diversity and can also develop a memory phenotype. On the other hand, the various subsets are also part of the innate immune system, as restricted TCR or NK receptors may be used as pattern recognition receptors. For example, large numbers of human Vγ9/Vδ2 T cells respond within hours to common molecules produced by microbes, and highly restricted Vδ1+ T cells in epithelia respond to stressed epithelial cells.[51]
An antibody is made up of two heavy chains and two light chains. The unique variable region allows an antibody to recognize its matching antigen.[59]

B lymphocytes and antibodies[edit]

A B cell identifies pathogens when antibodies on its surface bind to a specific foreign antigen.[60] This antigen/antibody complex is taken up by the B cell and processed by proteolysis into peptides. The B cell then displays these antigenic peptides on its surface MHC class II molecules. This combination of MHC and antigen attracts a matching helper T cell, which releases lymphokines and activates the B cell.[61] As the activated B cell then begins to divide, its offspring (plasma cells) secrete millions of copies of the antibody that recognizes this antigen. These antibodies circulate in blood plasma and lymph, bind to pathogens expressing the antigen and mark them for destruction by complement activation or for uptake and destruction by phagocytes. Antibodies can also neutralize challenges directly, by binding to bacterial toxins or by interfering with the receptors that viruses and bacteria use to infect cells.[62]

Alternative adaptive immune system[edit]

Evolution of the adaptive immune system occurred in an ancestor of the jawed vertebrates. Many of the classical molecules of the adaptive immune system (e.g., immunoglobulins and T cell receptors) exist only in jawed vertebrates. However, a distinct lymphocyte-derived molecule has been discovered in primitive jawless vertebrates, such as the lamprey and hagfish. These animals possess a large array of molecules called Variable lymphocyte receptors (VLRs) that, like the antigen receptors of jawed vertebrates, are produced from only a small number (one or two) of genes. These molecules are believed to bind pathogenic antigens in a similar way to antibodies, and with the same degree of specificity.[63]

Immunological memory[edit]

For more details on this topic, see Immunity (medical).
When B cells and T cells are activated and begin to replicate, some of their offspring become long-lived memory cells. Throughout the lifetime of an animal, these memory cells remember each specific pathogen encountered and can mount a strong response if the pathogen is detected again. This is "adaptive" because it occurs during the lifetime of an individual as an adaptation to infection with that pathogen and prepares the immune system for future challenges. Immunological memory can be in the form of either passive short-term memory or active long-term memory.

Passive memory[edit]

Newborn infants have no prior exposure to microbes and are particularly vulnerable to infection. Several layers of passive protection are provided by the mother. During pregnancy, a particular type of antibody, called IgG, is transported from mother to baby directly across the placenta, so human babies have high levels of antibodies even at birth, with the same range of antigen specificities as their mother.[64] Breast milk or colostrum also contains antibodies that are transferred to the gut of the infant and protect against bacterial infections until the newborn can synthesize its own antibodies.[65] This is passive immunity because the fetus does not actually make any memory cells or antibodies—it only borrows them. This passive immunity is usually short-term, lasting from a few days up to several months. In medicine, protective passive immunity can also be transferred artificially from one individual to another via antibody-rich serum.[66]
The time-course of an immune response begins with the initial pathogen encounter, (or initial vaccination) and leads to the formation and maintenance of active immunological memory.

Active memory and immunization[edit]

Long-term active memory is acquired following infection by activation of B and T cells. Active immunity can also be generated artificially, through vaccination. The principle behind vaccination (also called immunization) is to introduce an antigen from a pathogen in order to stimulate the immune system and develop specific immunity against that particular pathogen without causing disease associated with that organism.[14] This deliberate induction of an immune response is successful because it exploits the natural specificity of the immune system, as well as its inducibility. With infectious disease remaining one of the leading causes of death in the human population, vaccination represents the most effective manipulation of the immune system mankind has developed.[35][67]
Most viral vaccines are based on live attenuated viruses, while many bacterial vaccines are based on acellular components of micro-organisms, including harmless toxin components.[14] Since many antigens derived from acellular vaccines do not strongly induce the adaptive response, most bacterial vaccines are provided with additional adjuvants that activate the antigen-presenting cells of the innate immune system and maximize immunogenicity.[68]

Disorders of human immunity[edit]

The immune system is a remarkably effective structure that incorporates specificity, inducibility and adaptation. Failures of host defense do occur, however, and fall into three broad categories: immunodeficiencies, autoimmunity, and hypersensitivities.

Immunodeficiencies[edit]

For more details on this topic, see Immunodeficiency.
Immunodeficiencies occur when one or more of the components of the immune system are inactive. The ability of the immune system to respond to pathogens is diminished in both the young and the elderly, with immune responses beginning to decline at around 50 years of age due to immunosenescence.[69][70] In developed countries, obesity, alcoholism, and drug use are common causes of poor immune function.[70] However, malnutrition is the most common cause of immunodeficiency in developing countries.[70] Diets lacking sufficient protein are associated with impaired cell-mediated immunity, complement activity, phagocyte function, IgA antibody concentrations, and cytokine production. Additionally, the loss of the thymus at an early age through genetic mutation or surgical removal results in severe immunodeficiency and a high susceptibility to infection.[71]
Immunodeficiencies can also be inherited or 'acquired'.[14] Chronic granulomatous disease, where phagocytes have a reduced ability to destroy pathogens, is an example of an inherited, or congenital, immunodeficiency. AIDS and some types of cancer cause acquired immunodeficiency.[72][73]

Autoimmunity[edit]

For more details on this topic, see Autoimmunity.
Overactive immune responses comprise the other end of immune dysfunction, particularly the autoimmune disorders. Here, the immune system fails to properly distinguish between self and non-self, and attacks part of the body. Under normal circumstances, many T cells and antibodies react with "self" peptides.[74] One of the functions of specialized cells (located in the thymus and bone marrow) is to present young lymphocytes with self antigens produced throughout the body and to eliminate those cells that recognize self-antigens, preventing autoimmunity.[60]

Hypersensitivity[edit]

For more details on this topic, see Hypersensitivity.
Hypersensitivity is an immune response that damages the body's own tissues. They are divided into four classes (Type I – IV) based on the mechanisms involved and the time course of the hypersensitive reaction. Type I hypersensitivity is an immediate or anaphylactic reaction, often associated with allergy. Symptoms can range from mild discomfort to death. Type I hypersensitivity is mediated by IgE, which triggers degranulation of mast cells and basophils when cross-linked by antigen.[75] Type II hypersensitivity occurs when antibodies bind to antigens on the patient's own cells, marking them for destruction. This is also called antibody-dependent (or cytotoxic) hypersensitivity, and is mediated by IgG and IgM antibodies.[75] Immune complexes (aggregations of antigens, complement proteins, and IgG and IgM antibodies) deposited in various tissues trigger Type III hypersensitivity reactions.[75] Type IV hypersensitivity (also known as cell-mediated or delayed type hypersensitivity) usually takes between two and three days to develop. Type IV reactions are involved in many autoimmune and infectious diseases, but may also involve contact dermatitis (poison ivy). These reactions are mediated by T cells, monocytes, and macrophages.[75]

Other mechanisms[edit]

For more details on this topic, see Innate immune system § Other forms of innate immunity.
It is likely that a multicomponent, adaptive immune system arose with the first vertebrates, as invertebrates do not generate lymphocytes or an antibody-based humoral response.[1] Many species, however, utilize mechanisms that appear to be precursors of these aspects of vertebrate immunity. Immune systems appear even in the structurally most simple forms of life, with bacteria using a unique defense mechanism, called the restriction modification system to protect themselves from viral pathogens, called bacteriophages.[76] Prokaryotes also possess acquired immunity, through a system that uses CRISPR sequences to retain fragments of the genomes of phage that they have come into contact with in the past, which allows them to block virus replication through a form of RNA interference.[77][78]
Pattern recognition receptors are proteins used by nearly all organisms to identify molecules associated with pathogens. Antimicrobial peptides called defensins are an evolutionarily conserved component of the innate immune response found in all animals and plants, and represent the main form of invertebrate systemic immunity.[1] The complement system and phagocytic cells are also used by most forms of invertebrate life. Ribonucleases and the RNA interference pathway are conserved across all eukaryotes, and are thought to play a role in the immune response to viruses.[79]
Unlike animals, plants lack phagocytic cells, but many plant immune responses involve systemic chemical signals that are sent through a plant.[80] Individual plant cells respond to molecules associated with pathogens known as Pathogen-associated molecular patterns or PAMPs.[81] When a part of a plant becomes infected, the plant produces a localized hypersensitive response, whereby cells at the site of infection undergo rapid apoptosis to prevent the spread of the disease to other parts of the plant. Systemic acquired resistance (SAR) is a type of defensive response used by plants that renders the entire plant resistant to a particular infectious agent.[80] RNA silencing mechanisms are particularly important in this systemic response as they can block virus replication.[82]

Tumor immunology[edit]

Further information: Cancer immunology
Macrophages have identified a cancer cell (the large, spiky mass). Upon fusing with the cancer cell, the macrophages (smaller white cells) inject toxins that kill the tumor cell. Immunotherapy for the treatment of cancer is an active area of medical research.[83]
Another important role of the immune system is to identify and eliminate tumors. The transformed cells of tumors express antigens that are not found on normal cells. To the immune system, these antigens appear foreign, and their presence causes immune cells to attack the transformed tumor cells. The antigens expressed by tumors have several sources;[84] some are derived from oncogenic viruses like human papillomavirus, which causes cervical cancer,[85] while others are the organism's own proteins that occur at low levels in normal cells but reach high levels in tumor cells. One example is an enzyme called tyrosinase that, when expressed at high levels, transforms certain skin cells (e.g. melanocytes) into tumors called melanomas.[86][87] A third possible source of tumor antigens are proteins normally important for regulating cell growth and survival, that commonly mutate into cancer inducing molecules called oncogenes.[84][88][89]
The main response of the immune system to tumors is to destroy the abnormal cells using killer T cells, sometimes with the assistance of helper T cells.[87][90] Tumor antigens are presented on MHC class I molecules in a similar way to viral antigens. This allows killer T cells to recognize the tumor cell as abnormal.[91] NK cells also kill tumorous cells in a similar way, especially if the tumor cells have fewer MHC class I molecules on their surface than normal; this is a common phenomenon with tumors.[92] Sometimes antibodies are generated against tumor cells allowing for their destruction by the complement system.[88]
Clearly, some tumors evade the immune system and go on to become cancers.[93] Tumor cells often have a reduced number of MHC class I molecules on their surface, thus avoiding detection by killer T cells.[91] Some tumor cells also release products that inhibit the immune response; for example by secreting the cytokine TGF-β, which suppresses the activity of macrophages and lymphocytes.[94] In addition, immunological tolerance may develop against tumor antigens, so the immune system no longer attacks the tumor cells.[93]
Paradoxically, macrophages can promote tumor growth [95] when tumor cells send out cytokines that attract macrophages, which then generate cytokines and growth factors that nurture tumor development. In addition, a combination of hypoxia in the tumor and a cytokine produced by macrophages induces tumor cells to decrease production of a protein that blocks metastasis and thereby assists spread of cancer cells.

Physiological regulation[edit]

Hormones can act as immunomodulators, altering the sensitivity of the immune system. For example, female sex hormones are known immunostimulators of both adaptive[96] and innate immune responses.[97] Some autoimmune diseases such as lupus erythematosus strike women preferentially, and their onset often coincides with puberty. By contrast, male sex hormones such as testosterone seem to be immunosuppressive.[98] Other hormones appear to regulate the immune system as well, most notably prolactin, growth hormone and vitamin D.[99][100]
When a T-cell encounters a foreign pathogen, it extends a vitamin D receptor. This is essentially a signaling device that allows the T-cell to bind to the active form of vitamin D, the steroid hormone calcitriol. T-cells have a symbiotic relationship with vitamin D. Not only does the T-cell extend a vitamin D receptor, in essence asking to bind to the steroid hormone version of vitamin D, calcitriol, but the T-cell expresses the gene CYP27B1, which is the gene responsible for converting the pre-hormone version of vitamin D, calcidiol into the steroid hormone version, calcitriol. Only after binding to calcitriol can T-cells perform their intended function. Other immune system cells that are known to express CYP27B1 and thus activate vitamin D calcidiol, are dendritic cells, keratinocytes and macrophages.[101][102]
It is conjectured that a progressive decline in hormone levels with age is partially responsible for weakened immune responses in aging individuals.[103] Conversely, some hormones are regulated by the immune system, notably thyroid hormone activity.[104] The age-related decline in immune function is also related to decreasing vitamin D levels in the elderly. As people age, two things happen that negatively affect their vitamin D levels. First, they stay indoors more due to decreased activity levels. This means that they get less sun and therefore produce less cholecalciferol via UVB radiation. Second, as a person ages the skin becomes less adept at producing vitamin D.[105]

Sleep and Rest[edit]

The immune system is affected by sleep and rest,[106] and sleep deprivation is detrimental to immune function.[107] Complex feedback loops involving cytokines, such as interleukin-1 and tumor necrosis factor-α produced in response to infection, appear to also play a role in the regulation of non-rapid eye movement (REM) sleep.[108] Thus the immune response to infection may result in changes to the sleep cycle, including an increase in slow-wave sleep relative to REM sleep.[109]
When suffering from sleep deprivation, active immunizations may have a diminished effect and may result in lower antibody production, and a lowered immune response, then would be noted in a well-rested individual. Additionally, proteins such as NFIL3, which have been shown to be closely intertwined with both T-cell differentiation and our circadian rhythms, which can be affected through the disturbance of natural light and dark cycles through instances of sleep deprivation, shift work, etc. As a result these disruptions can lead to an increase in chronic conditions such as heart disease, chronic pain, and asthma.[110]
In addition to the negative consequences of sleep deprivation, sleep and the intertwined circadian system have been shown to have strong regulatory effects on immunological functions affecting both the innate and the adaptive immunity. First, during the early slow-wave-sleep stage, a sudden drop in blood levels of cortisol, epinephrine, and norepinephrine induce increased blood levels of the hormones leptin, pituitary growth hormone, and prolactin. These signals induce a pro-inflammatory state through the production of the pro-inflammatory cytokines interleukin-1, interleukin-12, TNF-alpha and IFN-gamma. These cytokines then stimulate immune functions such as immune cells activation, proliferation, and differentiation. It is during this time that undifferentiated, or less differentiated, like naïve and central memory T cells, peak (i.e. during a time of a slowly evolving adaptive immune response). In addition to these effects, the milieu of hormones produced at this time (leptin, pituitary growth hormone, and prolactin) support the interactions between APCs and T-cells, a shift of the Th1/Th2 cytokine balance towards one that supports Th1, an increase in overall Th cell proliferation, and naïve T cell migration to lymph nodes. This milieu is also thought to support the formation of long-lasting immune memory through the initiation of Th1 immune responses.[111]
In contrast, during wake periods differentiated effector cells, such as cytotoxic natural killer cells and CTLs, peak in order to elicit an effective response against any intruding pathogens. As well during awake active times, anti-inflammatory molecules, such as cortisol and catecholamines, peak. There are two theories as to why the pro-inflammatory state is reserved for sleep time. First, inflammation would cause serious cognitive and physical impairments if it were to occur during wake times. Second, inflammation may occur during sleep times due to the presence of melatonin. Inflammation causes a great deal of oxidative stress and the presence of melatonin during sleep times could actively counteract free radical production during this time.[112][113]

Nutrition and diet[edit]

Overnutrition is associated with diseases such as diabetes and obesity, which are known to affect immune function. More moderate malnutrition, as well as certain specific trace mineral and nutrient deficiencies, can also compromise the immune response.[114][page needed]
Foods rich in certain fatty acids may foster a healthy immune system.[115] Likewise, fetal undernourishment can cause a lifelong impairment of the immune system.[116]

Manipulation in medicine[edit]

The immune response can be manipulated to suppress unwanted responses resulting from autoimmunity, allergy, and transplant rejection, and to stimulate protective responses against pathogens that largely elude the immune system (see immunization). Immunosuppressive drugs are used to control autoimmune disorders or inflammation when excessive tissue damage occurs, and to prevent transplant rejection after an organ transplant.[35][117]
Anti-inflammatory drugs are often used to control the effects of inflammation. Glucocorticoids are the most powerful of these drugs; however, these drugs can have many undesirable side effects, such as central obesity, hyperglycemia, osteoporosis, and their use must be tightly controlled.[118] Lower doses of anti-inflammatory drugs are often used in conjunction with cytotoxic or immunosuppressive drugs such as methotrexate or azathioprine. Cytotoxic drugs inhibit the immune response by killing dividing cells such as activated T cells. However, the killing is indiscriminate and other constantly dividing cells and their organs are affected, which causes toxic side effects.[117] Immunosuppressive drugs such as cyclosporin prevent T cells from responding to signals correctly by inhibiting signal transduction pathways.[119]
Larger drugs (>500 Da) can provoke a neutralizing immune response, particularly if the drugs are administered repeatedly, or in larger doses. This limits the effectiveness of drugs based on larger peptides and proteins (which are typically larger than 6000 Da). In some cases, the drug itself is not immunogenic, but may be co-administered with an immunogenic compound, as is sometimes the case for Taxol. Computational methods have been developed to predict the immunogenicity of peptides and proteins, which are particularly useful in designing therapeutic antibodies, assessing likely virulence of mutations in viral coat particles, and validation of proposed peptide-based drug treatments. Early techniques relied mainly on the observation that hydrophilic amino acids are overrepresented in epitope regions than hydrophobic amino acids;[120] however, more recent developments rely on machine learning techniques using databases of existing known epitopes, usually on well-studied virus proteins, as a training set.[121] A publicly accessible database has been established for the cataloguing of epitopes from pathogens known to be recognizable by B cells.[122] The emerging field of bioinformatics-based studies of immunogenicity is referred to as immunoinformatics.[123] Immunoproteomics is the study of large sets of proteins (proteomics) involved in the immune response.

Manipulation by pathogens[edit]

The success of any pathogen depends on its ability to elude host immune responses. Therefore, pathogens evolved several methods that allow them to successfully infect a host, while evading detection or destruction by the immune system.[124] Bacteria often overcome physical barriers by secreting enzymes that digest the barrier, for example, by using a type II secretion system.[125] Alternatively, using a type III secretion system, they may insert a hollow tube into the host cell, providing a direct route for proteins to move from the pathogen to the host. These proteins are often used to shut down host defenses.[126]
An evasion strategy used by several pathogens to avoid the innate immune system is to hide within the cells of their host (also called intracellular pathogenesis). Here, a pathogen spends most of its life-cycle inside host cells, where it is shielded from direct contact with immune cells, antibodies and complement. Some examples of intracellular pathogens include viruses, the food poisoning bacterium Salmonella and the eukaryotic parasites that cause malaria (Plasmodium falciparum) and leishmaniasis (Leishmania spp.). Other bacteria, such as Mycobacterium tuberculosis, live inside a protective capsule that prevents lysis by complement.[127] Many pathogens secrete compounds that diminish or misdirect the host's immune response.[124] Some bacteria form biofilms to protect themselves from the cells and proteins of the immune system. Such biofilms are present in many successful infections, e.g., the chronic Pseudomonas aeruginosa and Burkholderia cenocepacia infections characteristic of cystic fibrosis.[128] Other bacteria generate surface proteins that bind to antibodies, rendering them ineffective; examples include Streptococcus (protein G), Staphylococcus aureus (protein A), and Peptostreptococcus magnus (protein L).[129]
The mechanisms used to evade the adaptive immune system are more complicated. The simplest approach is to rapidly change non-essential epitopes (amino acids and/or sugars) on the surface of the pathogen, while keeping essential epitopes concealed. This is called antigenic variation. An example is HIV, which mutates rapidly, so the proteins on its viral envelope that are essential for entry into its host target cell are constantly changing. These frequent changes in antigens may explain the failures of vaccines directed at this virus.[130] The parasite Trypanosoma brucei uses a similar strategy, constantly switching one type of surface protein for another, allowing it to stay one step ahead of the antibody response.[131] Masking antigens with host molecules is another common strategy for avoiding detection by the immune system. In HIV, the envelope that covers the virion is formed from the outermost membrane of the host cell; such "self-cloaked" viruses make it difficult for the immune system to identify them as "non-self" structures.[132]

See also[edit]

References[edit]

  1. ^ a b c Beck, Gregory; Gail S. Habicht (November 1996). "Immunity and the Invertebrates" (PDF). Scientific American 275 (5): 60–66. doi:10.1038/scientificamerican1196-60. Retrieved 1 January 2007. 
  2. ^ "Inflammatory Cells and Cancer", Lisa M. Coussens and Zena Werb, Journal of Experimental Medicine, March 19, 2001, vol. 193, no. 6, pages F23–26, Retrieved Aug 13, 2010
  3. ^ "Chronic Immune Activation and Inflammation as the Cause of Malignancy", K.J. O'Byrne and A.G. Dalgleish, British Journal of Cancer, August 2001, vol. 85, no. 4, pages 473–483, Retrieved Aug 13, 2010
  4. ^ Retief FP, Cilliers L (January 1998). "The epidemic of Athens, 430–426 BC". South African Medical Journal 88 (1): 50–3. PMID 9539938. 
  5. ^ Ostoya P (1954). "Maupertuis et la biologie". Revue d'histoire des sciences et de leurs applications 7 (1): 60–78. doi:10.3406/rhs.1954.3379. 
  6. ^ Plotkin SA (April 2005). "Vaccines: past, present and future". Nature Medicine 11 (4 Suppl): S5–11. doi:10.1038/nm1209. PMID 15812490. 
  7. ^ The Nobel Prize in Physiology or Medicine 1905 Nobelprize.org Accessed 8 January 2009.
  8. ^ Major Walter Reed, Medical Corps, U.S. Army Walter Reed Army Medical Center. Accessed 8 January 2007.
  9. ^ Metchnikoff, Elie; Translated by F.G. Binnie. (1905). Immunity in Infective Diseases (Full Text Version: Google Books). Cambridge University Press. LCCN 68025143. 
  10. ^ The Nobel Prize in Physiology or Medicine 1908 Nobelprize.org Accessed 8 January 2007
  11. ^ a b Litman GW, Cannon JP, Dishaw LJ (November 2005). "Reconstructing immune phylogeny: new perspectives". Nature Reviews Immunology 5 (11): 866–79. doi:10.1038/nri1712. PMC 3683834. PMID 16261174. 
  12. ^ a b c Mayer, Gene (2006). "Immunology — Chapter One: Innate (non-specific) Immunity". Microbiology and Immunology On-Line Textbook. USC School of Medicine. Retrieved 1 January 2007. 
  13. ^ Smith A.D. (Ed) Oxford dictionary of biochemistry and molecular biology. (1997) Oxford University Press. ISBN 0-19-854768-4
  14. ^ a b c d e f g h i Alberts, Bruce; Alexander Johnson; Julian Lewis; Martin Raff; Keith Roberts; Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1. 
  15. ^ Medzhitov R (October 2007). "Recognition of microorganisms and activation of the immune response". Nature 449 (7164): 819–26. Bibcode:2007Natur.449..819M. doi:10.1038/nature06246. PMID 17943118. 
  16. ^ Matzinger P (April 2002). "The danger model: a renewed sense of self". Science 296 (5566): 301–5. Bibcode:2002Sci...296..301M. doi:10.1126/science.1071059. PMID 11951032. 
  17. ^ Boyton RJ, Openshaw PJ (2002). "Pulmonary defences to acute respiratory infection". British Medical Bulletin 61 (1): 1–12. doi:10.1093/bmb/61.1.1. PMID 11997295. 
  18. ^ Agerberth B, Gudmundsson GH (2006). "Host antimicrobial defence peptides in human disease". Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology 306: 67–90. doi:10.1007/3-540-29916-5_3. ISBN 978-3-540-29915-8. PMID 16909918. 
  19. ^ Moreau JM, Girgis DO, Hume EB, Dajcs JJ, Austin MS, O'Callaghan RJ (September 2001). "Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus". Investigative Ophthalmology & Visual Science 42 (10): 2347–54. PMID 11527949. 
  20. ^ Hankiewicz J, Swierczek E (December 1974). "Lysozyme in human body fluids". Clinica Chimica Acta 57 (3): 205–9. doi:10.1016/0009-8981(74)90398-2. PMID 4434640. 
  21. ^ Fair WR, Couch J, Wehner N (February 1976). "Prostatic antibacterial factor. Identity and significance". Urology 7 (2): 169–77. doi:10.1016/0090-4295(76)90305-8. PMID 54972. 
  22. ^ Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH (June 2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli". The Biochemical Journal 372 (Pt 2): 473–83. doi:10.1042/BJ20030225. PMC 1223422. PMID 12628001. 
  23. ^ Gorbach SL (February 1990). "Lactic acid bacteria and human health". Annals of Medicine 22 (1): 37–41. doi:10.3109/07853899009147239. PMID 2109988. 
  24. ^ Hill LV, Embil JA (February 1986). "Vaginitis: current microbiologic and clinical concepts". CMAJ 134 (4): 321–31. PMC 1490817. PMID 3510698. 
  25. ^ Reid G, Bruce AW (August 2003). "Urogenital infections in women: can probiotics help?". Postgraduate Medical Journal 79 (934): 428–32. doi:10.1136/pmj.79.934.428. PMC 1742800. PMID 12954951. 
  26. ^ Salminen SJ, Gueimonde M, Isolauri E (May 2005). "Probiotics that modify disease risk". The Journal of Nutrition 135 (5): 1294–8. PMID 15867327. 
  27. ^ Reid G, Jass J, Sebulsky MT, McCormick JK (October 2003). "Potential Uses of Probiotics in Clinical Practice". Clinical Microbiology Reviews 16 (4): 658–72. doi:10.1128/CMR.16.4.658-672.2003. PMC 207122. PMID 14557292. 
  28. ^ Kawai T, Akira S (February 2006). "Innate immune recognition of viral infection". Nature Immunology 7 (2): 131–7. doi:10.1038/ni1303. PMID 16424890. 
  29. ^ Miller SB (August 2006). "Prostaglandins in health and disease: an overview". Seminars in Arthritis and Rheumatism 36 (1): 37–49. doi:10.1016/j.semarthrit.2006.03.005. PMID 16887467. 
  30. ^ Ogawa Y, Calhoun WJ (October 2006). "The role of leukotrienes in airway inflammation". The Journal of Allergy and Clinical Immunology 118 (4): 789–98; quiz 799–800. doi:10.1016/j.jaci.2006.08.009. PMID 17030228. 
  31. ^ Le Y, Zhou Y, Iribarren P, Wang J (April 2004). "Chemokines and chemokine receptors: their manifold roles in homeostasis and disease". Cellular & Molecular Immunology 1 (2): 95–104. PMID 16212895. 
  32. ^ Martin P, Leibovich SJ (November 2005). "Inflammatory cells during wound repair: the good, the bad and the ugly". Trends in Cell Biology 15 (11): 599–607. doi:10.1016/j.tcb.2005.09.002. PMID 16202600. 
  33. ^ a b Rus H, Cudrici C, Niculescu F (2005). "The role of the complement system in innate immunity". Immunologic Research 33 (2): 103–12. doi:10.1385/IR:33:2:103. PMID 16234578. 
  34. ^ Mayer, Gene (2006). "Immunology — Chapter Two: Complement". Microbiology and Immunology On-Line Textbook. USC School of Medicine. Retrieved 1 January 2007. 
  35. ^ a b c d e f g Janeway CA, Jr. et al. (2005). Immunobiology. (6th ed.). Garland Science. ISBN 0-443-07310-4. 
  36. ^ Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996). "Control of the complement system". Advances in Immunology. Advances in Immunology 61: 201–83. doi:10.1016/S0065-2776(08)60868-8. ISBN 978-0-12-022461-6. PMID 8834497. 
  37. ^ Sim RB, Tsiftsoglou SA (February 2004). "Proteases of the complement system". Biochemical Society Transactions 32 (Pt 1): 21–7. doi:10.1042/BST0320021. PMID 14748705. 
  38. ^ Ryter A (1985). "Relationship between ultrastructure and specific functions of macrophages". Comparative Immunology, Microbiology and Infectious Diseases 8 (2): 119–33. doi:10.1016/0147-9571(85)90039-6. PMID 3910340. 
  39. ^ Langermans JA, Hazenbos WL, van Furth R (September 1994). "Antimicrobial functions of mononuclear phagocytes". Journal of Immunological Methods 174 (1–2): 185–94. doi:10.1016/0022-1759(94)90021-3. PMID 8083520. 
  40. ^ May RC, Machesky LM (March 2001). "Phagocytosis and the actin cytoskeleton". Journal of Cell Science 114 (Pt 6): 1061–77. PMID 11228151. 
  41. ^ Salzet M, Tasiemski A, Cooper E (2006). "Innate immunity in lophotrochozoans: the annelids". Current Pharmaceutical Design 12 (24): 3043–50. doi:10.2174/138161206777947551. PMID 16918433. 
  42. ^ Zen K, Parkos CA (October 2003). "Leukocyte-epithelial interactions". Current Opinion in Cell Biology 15 (5): 557–64. doi:10.1016/S0955-0674(03)00103-0. PMID 14519390. 
  43. ^ a b Stvrtinová, Viera; Jakubovský, Ján; Hulín, Ivan (1995). Inflammation and Fever from Pathophysiology: Principles of Disease. Computing Centre, Slovak Academy of Sciences: Academic Electronic Press. Retrieved 1 January 2007. 
  44. ^ Bowers, William (2006). "Immunology -Chapter Thirteen: Immunoregulation". Microbiology and Immunology On-Line Textbook. USC School of Medicine. Retrieved 4 January 2007. 
  45. ^ a b Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002). "Antigen presentation and T cell stimulation by dendritic cells". Annual Review of Immunology 20 (1): 621–67. doi:10.1146/annurev.immunol.20.100301.064828. PMID 11861614. 
  46. ^ Krishnaswamy G, Ajitawi O, Chi DS (2006). "The human mast cell: an overview". Methods in Molecular Biology 315: 13–34. PMID 16110146. 
  47. ^ Kariyawasam HH, Robinson DS (April 2006). "The eosinophil: the cell and its weapons, the cytokines, its locations". Seminars in Respiratory and Critical Care Medicine 27 (2): 117–27. doi:10.1055/s-2006-939514. PMID 16612762. 
  48. ^ Middleton D, Curran M, Maxwell L (August 2002). "Natural killer cells and their receptors". Transplant Immunology 10 (2–3): 147–64. doi:10.1016/S0966-3274(02)00062-X. PMID 12216946. 
  49. ^ Rajalingam R (2012). "Overview of the killer cell immunoglobulin-like receptor system". Methods in Molecular Biology (Clifton, N.J.). Methods in Molecular Biology™ 882: 391–414. doi:10.1007/978-1-61779-842-9_23. ISBN 978-1-61779-841-2. PMID 22665247. 
  50. ^ Pancer Z, Cooper MD (2006). "The evolution of adaptive immunity". Annual Review of Immunology 24 (1): 497–518. doi:10.1146/annurev.immunol.24.021605.090542. PMID 16551257. 
  51. ^ a b Holtmeier W, Kabelitz D (2005). "gammadelta T cells link innate and adaptive immune responses". Chemical Immunology and Allergy. Chemical Immunology and Allergy 86: 151–83. doi:10.1159/000086659. ISBN 3-8055-7862-8. PMID 15976493. 
  52. ^ Harty JT, Tvinnereim AR, White DW (2000). "CD8+ T cell effector mechanisms in resistance to infection". Annual Review of Immunology 18 (1): 275–308. doi:10.1146/annurev.immunol.18.1.275. PMID 10837060. 
  53. ^ a b Radoja S, Frey AB, Vukmanovic S (2006). "T-cell receptor signaling events triggering granule exocytosis". Critical Reviews in Immunology 26 (3): 265–90. doi:10.1615/CritRevImmunol.v26.i3.40. PMID 16928189. 
  54. ^ Abbas AK, Murphy KM, Sher A (October 1996). "Functional diversity of helper T lymphocytes". Nature 383 (6603): 787–93. Bibcode:1996Natur.383..787A. doi:10.1038/383787a0. PMID 8893001. 
  55. ^ McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG (2006). "Helper T cell-regulated B cell immunity". Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology 311: 59–83. doi:10.1007/3-540-32636-7_3. ISBN 978-3-540-32635-9. PMID 17048705. 
  56. ^ Kovacs B, Maus MV, Riley JL, et al. (November 2002). "Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation". Proceedings of the National Academy of Sciences of the United States of America 99 (23): 15006–11. Bibcode:2002PNAS...9915006K. doi:10.1073/pnas.232058599. PMC 137535. PMID 12419850. 
  57. ^ Grewal IS, Flavell RA (1998). "CD40 and CD154 in cell-mediated immunity". Annual Review of Immunology 16 (1): 111–35. doi:10.1146/annurev.immunol.16.1.111. PMID 9597126. 
  58. ^ Girardi M (January 2006). "Immunosurveillance and immunoregulation by gammadelta T cells". The Journal of Investigative Dermatology 126 (1): 25–31. doi:10.1038/sj.jid.5700003. PMID 16417214. 
  59. ^ "Understanding the Immune System: How it Works" (PDF). National Institute of Allergy and Infectious Diseases (NIAID). Retrieved 1 January 2007. 
  60. ^ a b Sproul TW, Cheng PC, Dykstra ML, Pierce SK (2000). "A role for MHC class II antigen processing in B cell development". International Reviews of Immunology 19 (2–3): 139–55. doi:10.3109/08830180009088502. PMID 10763706. 
  61. ^ Kehry MR, Hodgkin PD (1994). "B-cell activation by helper T-cell membranes". Critical Reviews in Immunology 14 (3–4): 221–38. doi:10.1615/CritRevImmunol.v14.i3-4.20. PMID 7538767. 
  62. ^ Bowers, William (2006). "Immunology — Chapter nine: Cells involved in immune responses". Microbiology and Immunology On-Line Textbook. USC School of Medicine. Retrieved 4 January 2007. 
  63. ^ Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (December 2005). "Diversity and function of adaptive immune receptors in a jawless vertebrate". Science 310 (5756): 1970–3. Bibcode:2005Sci...310.1970A. doi:10.1126/science.1119420. PMID 16373579. 
  64. ^ Saji F, Samejima Y, Kamiura S, Koyama M (May 1999). "Dynamics of immunoglobulins at the feto-maternal interface". Reviews of Reproduction 4 (2): 81–9. doi:10.1530/ror.0.0040081. PMID 10357095. 
  65. ^ Van de Perre P (July 2003). "Transfer of antibody via mother's milk". Vaccine 21 (24): 3374–6. doi:10.1016/S0264-410X(03)00336-0. PMID 12850343. 
  66. ^ Keller MA, Stiehm ER (October 2000). "Passive Immunity in Prevention and Treatment of Infectious Diseases". Clinical Microbiology Reviews 13 (4): 602–14. doi:10.1128/CMR.13.4.602-614.2000. PMC 88952. PMID 11023960. 
  67. ^ Death and DALY estimates for 2002 by cause for WHO Member States. World Health Organization. Retrieved on 1 January 2007.
  68. ^ Singh M, O'Hagan D (November 1999). "Advances in vaccine adjuvants". Nature Biotechnology 17 (11): 1075–81. doi:10.1038/15058. PMID 10545912. 
  69. ^ Aw D, Silva AB, Palmer DB (April 2007). "Immunosenescence: emerging challenges for an ageing population". Immunology 120 (4): 435–46. doi:10.1111/j.1365-2567.2007.02555.x. PMC 2265901. PMID 17313487. 
  70. ^ a b c Chandra RK (August 1997). "Nutrition and the immune system: an introduction". The American Journal of Clinical Nutrition 66 (2): 460S–463S. PMID 9250133. 
  71. ^ Miller JF (July 2002). "The discovery of thymus function and of thymus-derived lymphocytes". Immunological Reviews 185 (1): 7–14. doi:10.1034/j.1600-065X.2002.18502.x. PMID 12190917. 
  72. ^ Joos L, Tamm M (2005). "Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy". Proceedings of the American Thoracic Society 2 (5): 445–8. doi:10.1513/pats.200508-097JS. PMID 16322598. 
  73. ^ Copeland KF, Heeney JL (December 1996). "T helper cell activation and human retroviral pathogenesis". Microbiological Reviews 60 (4): 722–42. PMC 239461. PMID 8987361. 
  74. ^ Miller JF (1993). "Self-nonself discrimination and tolerance in T and B lymphocytes". Immunologic Research 12 (2): 115–30. doi:10.1007/BF02918299. PMID 8254222. 
  75. ^ a b c d Ghaffar, Abdul (2006). "Immunology — Chapter Seventeen: Hypersensitivity Reactions". Microbiology and Immunology On-Line Textbook. USC School of Medicine. Retrieved 1 January 2007. 
  76. ^ Bickle TA, Krüger DH (June 1993). "Biology of DNA restriction". Microbiological Reviews 57 (2): 434–50. PMC 372918. PMID 8336674. 
  77. ^ Barrangou R, Fremaux C, Deveau H, et al. (March 2007). "CRISPR provides acquired resistance against viruses in prokaryotes". Science 315 (5819): 1709–12. Bibcode:2007Sci...315.1709B. doi:10.1126/science.1138140. PMID 17379808. 
  78. ^ Brouns SJ, Jore MM, Lundgren M, et al. (August 2008). "Small CRISPR RNAs guide antiviral defense in prokaryotes". Science 321 (5891): 960–4. Bibcode:2008Sci...321..960B. doi:10.1126/science.1159689. PMID 18703739. 
  79. ^ Stram Y, Kuzntzova L (June 2006). "Inhibition of viruses by RNA interference". Virus Genes 32 (3): 299–306. doi:10.1007/s11262-005-6914-0. PMID 16732482. 
  80. ^ a b Schneider, David (Spring 2005). "Innate Immunity — Lecture 4: Plant immune responses". Stanford University Department of Microbiology and Immunology. Retrieved 1 January 2007. [dead link]
  81. ^ Jones DG, Dangl JL (2006). "The plant immune system". Nature 444 (7117): 323–9. Bibcode:2006Natur.444..323J. doi:10.1038/nature05286. PMID 17108957. 
  82. ^ Baulcombe D (September 2004). "RNA silencing in plants". Nature 431 (7006): 356–63. Bibcode:2004Natur.431..356B. doi:10.1038/nature02874. PMID 15372043. 
  83. ^ Morgan RA, Dudley ME, Wunderlich JR, et al. (October 2006). "Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes". Science 314 (5796): 126–9. Bibcode:2006Sci...314..126M. doi:10.1126/science.1129003. PMC 2267026. PMID 16946036. 
  84. ^ a b Andersen MH, Schrama D, Thor Straten P, Becker JC (January 2006). "Cytotoxic T cells". The Journal of Investigative Dermatology 126 (1): 32–41. doi:10.1038/sj.jid.5700001. PMID 16417215. 
  85. ^ Boon T, van der Bruggen P (March 1996). "Human tumor antigens recognized by T lymphocytes". The Journal of Experimental Medicine 183 (3): 725–9. doi:10.1084/jem.183.3.725. PMC 2192342. PMID 8642276. 
  86. ^ Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G (March 2000). "T-cell recognition of melanoma-associated antigens". Journal of Cellular Physiology 182 (3): 323–31. doi:10.1002/(SICI)1097-4652(200003)182:3<323::AID-JCP2>3.0.CO;2-#. PMID 10653598. 
  87. ^ a b Romero P, Cerottini JC, Speiser DE (2006). "The human T cell response to melanoma antigens". Advances in Immunology. Advances in Immunology 92: 187–224. doi:10.1016/S0065-2776(06)92005-7. ISBN 978-0-12-373636-9. PMID 17145305. 
  88. ^ a b Guevara-Patiño JA, Turk MJ, Wolchok JD, Houghton AN (2003). "Immunity to cancer through immune recognition of altered self: studies with melanoma". Advances in Cancer Research. Advances in Cancer Research 90: 157–77. doi:10.1016/S0065-230X(03)90005-4. ISBN 978-0-12-006690-2. PMID 14710950. 
  89. ^ Renkvist N, Castelli C, Robbins PF, Parmiani G (March 2001). "A listing of human tumor antigens recognized by T cells". Cancer Immunology, Immunotherapy 50 (1): 3–15. doi:10.1007/s002620000169. PMID 11315507. 
  90. ^ Gerloni M, Zanetti M (June 2005). "CD4 T cells in tumor immunity". Springer Seminars in Immunopathology 27 (1): 37–48. doi:10.1007/s00281-004-0193-z. PMID 15965712. 
  91. ^ a b Seliger B, Ritz U, Ferrone S (January 2006). "Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation". International Journal of Cancer 118 (1): 129–38. doi:10.1002/ijc.21312. PMID 16003759. 
  92. ^ Hayakawa Y, Smyth MJ (2006). "Innate immune recognition and suppression of tumors". Advances in Cancer Research. Advances in Cancer Research 95: 293–322. doi:10.1016/S0065-230X(06)95008-8. ISBN 9780120066957. PMID 16860661. 
  93. ^ a b Seliger B (2005). "Strategies of tumor immune evasion". BioDrugs 19 (6): 347–54. doi:10.2165/00063030-200519060-00002. PMID 16392887. 
  94. ^ Frumento G, Piazza T, Di Carlo E, Ferrini S (September 2006). "Targeting tumor-related immunosuppression for cancer immunotherapy". Endocrine, Metabolic & Immune Disorders Drug Targets 6 (3): 233–7. doi:10.2174/187153006778250019. PMID 17017974. 
  95. ^ Stix, Gary (July 2007). "A Malignant Flame" (PDF). Scientific American 297 (1): 60–67. doi:10.1038/scientificamerican0707-60. PMID 17695843. Retrieved 1 January 2007. 
  96. ^ Wira, CR; Crane-Godreau M; Grant K (2004). "Endocrine regulation of the mucosal immune system in the female reproductive tract". In In: Ogra PL, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J (eds.). Mucosal Immunology. San Francisco: Elsevier. ISBN 0-12-491543-4. 
  97. ^ Lang TJ (December 2004). "Estrogen as an immunomodulator". Clinical Immunology 113 (3): 224–30. doi:10.1016/j.clim.2004.05.011. PMID 15507385. 
    Moriyama A, Shimoya K, Ogata I, et al. (July 1999). "Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle". Molecular Human Reproduction 5 (7): 656–61. doi:10.1093/molehr/5.7.656. PMID 10381821. 
    Cutolo M, Sulli A, Capellino S, et al. (2004). "Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity". Lupus 13 (9): 635–8. doi:10.1191/0961203304lu1094oa. PMID 15485092. 
    King AE, Critchley HO, Kelly RW (February 2000). "Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial protective role". Molecular Human Reproduction 6 (2): 191–6. doi:10.1093/molehr/6.2.191. PMID 10655462. 
  98. ^ Fimmel S, Zouboulis CC (2005). "Influence of physiological androgen levels on wound healing and immune status in men". The Aging Male 8 (3–4): 166–74. doi:10.1080/13685530500233847. PMID 16390741. 
  99. ^ Dorshkind K, Horseman ND (June 2000). "The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency". Endocrine Reviews 21 (3): 292–312. doi:10.1210/er.21.3.292. PMID 10857555. 
  100. ^ Nagpal S, Na S, Rathnachalam R (August 2005). "Noncalcemic actions of vitamin D receptor ligands". Endocrine Reviews 26 (5): 662–87. doi:10.1210/er.2004-0002. PMID 15798098. 
  101. ^ Marina Rode von Essen, Martin Kongsbak, Peter Schjerling, Klaus Olgaard, Niels Ødum & Carsten Geisler (2010). "Vitamin D controls T cell antigen receptor signaling and activation of human T cells". Nature Immunology 11 (4): 344–349. doi:10.1038/ni.1851. PMID 20208539. 
  102. ^ Sigmundsdottir H, Pan J, Debes GF, et al. (March 2007). "DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27". Nat. Immunol. 8 (3): 285–93. doi:10.1038/ni1433. PMID 17259988. 
  103. ^ Hertoghe T (December 2005). "The 'multiple hormone deficiency' theory of aging: is human senescence caused mainly by multiple hormone deficiencies?". Annals of the New York Academy of Sciences 1057 (1): 448–65. Bibcode:2005NYASA1057..448H. doi:10.1196/annals.1322.035. PMID 16399912. 
  104. ^ Klein JR (March 2006). "The Immune System as a Regulator of Thyroid Hormone Activity". Experimental Biology and Medicine 231 (3): 229–36. PMC 2768616. PMID 16514168. 
  105. ^ Leif Mosekilde (2005). "Vitamin D and the elderly". Clinical Endocrinology 62 (3): 265–281. doi:10.1111/j.1365-2265.2005.02226.x. PMID 15730407. 
  106. ^ Lange T, Perras B, Fehm HL, Born J (2003). "Sleep enhances the human antibody response to hepatitis A vaccination". Psychosomatic Medicine 65 (5): 831–5. doi:10.1097/01.PSY.0000091382.61178.F1. PMID 14508028. 
  107. ^ Bryant PA, Trinder J, Curtis N (June 2004). "Sick and tired: Does sleep have a vital role in the immune system?". Nature Reviews Immunology 4 (6): 457–67. doi:10.1038/nri1369. PMID 15173834. 
  108. ^ Krueger JM, Majde JA (May 2003). "Humoral links between sleep and the immune system: research issues". Annals of the New York Academy of Sciences 992 (1): 9–20. Bibcode:2003NYASA.992....9K. doi:10.1111/j.1749-6632.2003.tb03133.x. PMID 12794042. 
  109. ^ Majde JA, Krueger JM (December 2005). "Links between the innate immune system and sleep". The Journal of Allergy and Clinical Immunology 116 (6): 1188–98. doi:10.1016/j.jaci.2005.08.005. PMID 16337444. 
  110. ^ "Sleep’s Effects On Your Immune System Revealed In New Body Clock Study". Retrieved 2014-04-28. 
  111. ^ Besedovsky L, Lange T, & Born J (2012). "Sleep and Immune Function". Pflugers Arch-Eur J Physiol 463: 121–137. doi:10.1007/s00424-011-1044-0. 
  112. ^ Besedovsky L., Lange T., & Born J. (2012). "Sleep and Immune Function". Eur J Physiol 463: 121–137. doi:10.1007/s00424-011-1044-0. 
  113. ^ "Can Better Sleep Mean Catching fewer Colds?". Retrieved 2014-04-28. 
  114. ^ R.M. Suskind, C.L. Lachney, J.N. Udall, Jr., "Malnutrition and the Immune Response", in: Dairy products in human health and nutrition, M. Serrano-Ríos, ed., CRC Press, 1994.
  115. ^ Pond CM (July 2005). "Adipose tissue and the immune system". Prostaglandins, Leukotrienes, and Essential Fatty Acids 73 (1): 17–30. doi:10.1016/j.plefa.2005.04.005. PMID 15946832. 
  116. ^ Langley-Evans SC, Carrington LJ (2006). "Diet and the developing immune system". Lupus 15 (11): 746–52. doi:10.1177/0961203306070001. PMID 17153845. 
  117. ^ a b Taylor AL, Watson CJ, Bradley JA (October 2005). "Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy". Critical Reviews in Oncology/hematology 56 (1): 23–46. doi:10.1016/j.critrevonc.2005.03.012. PMID 16039869. 
  118. ^ Barnes PJ (March 2006). "Corticosteroids: the drugs to beat". European Journal of Pharmacology 533 (1–3): 2–14. doi:10.1016/j.ejphar.2005.12.052. PMID 16436275. 
  119. ^ Masri MA (July 2003). "The mosaic of immunosuppressive drugs". Molecular Immunology 39 (17–18): 1073–7. doi:10.1016/S0161-5890(03)00075-0. PMID 12835079. 
  120. ^ Welling GW, Weijer WJ, van der Zee R, Welling-Wester S (September 1985). "Prediction of sequential antigenic regions in proteins". FEBS Letters 188 (2): 215–8. doi:10.1016/0014-5793(85)80374-4. PMID 2411595. 
  121. ^ Söllner J, Mayer B (2006). "Machine learning approaches for prediction of linear B-cell epitopes on proteins". Journal of Molecular Recognition 19 (3): 200–8. doi:10.1002/jmr.771. PMID 16598694. 
  122. ^ Saha S, Bhasin M, Raghava GP (2005). "Bcipep: A database of B-cell epitopes". BMC Genomics 6: 79. doi:10.1186/1471-2164-6-79. PMC 1173103. PMID 15921533. 
  123. ^ Flower DR, Doytchinova IA (2002). "Immunoinformatics and the prediction of immunogenicity". Applied Bioinformatics 1 (4): 167–76. PMID 15130835. 
  124. ^ a b Finlay BB, McFadden G (February 2006). "Anti-immunology: evasion of the host immune system by bacterial and viral pathogens". Cell 124 (4): 767–82. doi:10.1016/j.cell.2006.01.034. PMID 16497587. 
  125. ^ Cianciotto NP (December 2005). "Type II secretion: a protein secretion system for all seasons". Trends in Microbiology 13 (12): 581–8. doi:10.1016/j.tim.2005.09.005. PMID 16216510. 
  126. ^ Winstanley C, Hart CA (February 2001). "Type III secretion systems and pathogenicity islands". J. Med. Microbiol. 50 (2): 116–26. PMID 11211218. 
  127. ^ Finlay BB, Falkow S (June 1997). "Common themes in microbial pathogenicity revisited". Microbiol. Mol. Biol. Rev. 61 (2): 136–69. PMC 232605. PMID 9184008. 
  128. ^ Kobayashi H (2005). "Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections". Treatments in Respiratory Medicine 4 (4): 241–53. doi:10.2165/00151829-200504040-00003. PMID 16086598. 
  129. ^ Housden NG, Harrison S, Roberts SE, et al. (June 2003). "Immunoglobulin-binding domains: Protein L from Peptostreptococcus magnus". Biochemical Society Transactions 31 (Pt 3): 716–8. doi:10.1042/BST0310716. PMID 12773190. 
  130. ^ Burton DR, Stanfield RL, Wilson IA (October 2005). "Antibody vs. HIV in a clash of evolutionary titans". Proceedings of the National Academy of Sciences of the United States of America 102 (42): 14943–8. Bibcode:2005PNAS..10214943B. doi:10.1073/pnas.0505126102. PMC 1257708. PMID 16219699. 
  131. ^ Taylor JE, Rudenko G (November 2006). "Switching trypanosome coats: what's in the wardrobe?". Trends in Genetics 22 (11): 614–20. doi:10.1016/j.tig.2006.08.003. PMID 16908087. 
  132. ^ Cantin R, Méthot S, Tremblay MJ (June 2005). "Plunder and Stowaways: Incorporation of Cellular Proteins by Enveloped Viruses". Journal of Virology 79 (11): 6577–87. doi:10.1128/JVI.79.11.6577-6587.2005. PMC 1112128. PMID 15890896. 

External links[edit]